首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The rate coefficients of the reactions: (1) CN + H2CO → products and (2) NCO + H2CO → products in the temperature range 294–769 K have been determined by means of the laser photolysis-laser induced fluorescence technique. Our measurements show that reaction (1) is rapid: k1(294 K) = (1.64 ± 0.25) x 10−11 cm3 molecule−1 s−1; the Arrhenius relation was determined as k1 = (6.7 ± 1.0) x 10−11 exp[(−412 ± 20)/T] cm3 molecule−1 s−1. Reaction (2) is approximately a tenth as rapid as reaction (1) and the temperature dependence of k2 does not conform to the Arrhenius form: k2 = 4.62 x 10−17T1.71 exp(198/T) cm3 molecule−1 s−1. Our values are in reasonable agreement with the only reported measurement of k1; the rate coefficients for reaction (2) have not been previously reported.  相似文献   

2.
The principal route for decay of Hg 6s6p(3P1) in xenon is shown to be bimolecular deactivation to the mercury ground state, with rate coefficient 9.1 × 10−13 cm3 molecule−1 s−1; relaxation to the 3P0 state plays a negligible role. The equilibrium constant of the reaction Hg(3P1) + Xe HgXe(A 3O+), has been recorded as 1.73 × 10−20 cm3 molecule−1 at 293 K.  相似文献   

3.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

4.
The kinetics of the association reaction of CF3 with NO was studied as a function of temperature near the low-pressure limit, using pulsed laser photolysis and time-resolved mass spectrometry. CF3 radicals were generated by photolysis of CF3I at 248 nm and the kinetics was determined by monitoring the time-resolved formation of CF3NO. The bimolecular rate constants were measured from 0.5 to 12 Torr, using nitrogen as the buffer gas. The results are in very good agreement with recent data published by Vakhtin and Petrov, obtained at room temperature in a higher pressure range and, therefore, the two studies are quite complementary. A RRKM model was developed for fitting all the data, including those of Vakhtin and Petrov and for extrapolating the experimental results to the low- and high-pressure limits. The rate expressions obtained are the following: k1(0) = (3.2 ± 0.8) × 10−29 (T/298)−(3.4±0.6) cm6 molecule−2 s−1 for nitrogen used as the bath gas and k1(∞) = (2.0 ± 0.4) × 10−11 (T/298)(0±1) cm3 molecule−1 s−1. RRKM calculations also help to understand the differences in reactivity between CF3 and other radicals, for the same association reaction with NO.  相似文献   

5.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

6.
Using ab initio CI calculations we have evaluated the structural, energetic and kinetic parameters of the reaction between NH2 and NO. In light of the results obtained, it appears that while the formation of molecular nitrogen is highly probable, the reaction pathway leading to N2H+OH cannot be thermodynamically excluded. The kinetic model based on the RRKM and TST methods leads to a calculated rate constant at 298 K (k = 1.64×10−11 cm3 molecule−1 s−1) which is comparable to that determined experimentally and which decreases with temperature in the range 200–700 K.  相似文献   

7.
This Letter reports the first kinetic study of 2-butoxy radicals to employ direct monitoring of the radical. The reactions of 2-butoxy with O2 and NO are investigated using laser-induced fluorescence (LIF). The Arrhenius expressions for the reactions of 2-butoxy with NO (k1) and O2 (k2) in the temperature range 223–311 K have been determined to be k1=(7.50±1.69)×10−12×exp((2.98±0.47) kJmol−1/RT) cm3 molecule−1 s−1 and k2=(1.33±0.43)×10−15×exp((5.48±0.69) kJmol−1/RT) cm3 molecule−1 s−1. No pressure dependence was found for the rate constants of the reaction of 2-butoxy with NO at 223 K between 50 and 175 Torr.  相似文献   

8.
UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm. σR = (2.6 ± 0.4) × 10−18 cm2 molecule−1 and σRO2 = (4.1 ± 0.6) × 10−18 cm2 molecule−1 (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 ± 1.1) × 10−11 cm3 molecule−1 s−1. The rate constants for reaction of the alkyl radicals with molecular oxygen and the alkylperoxy radicals with NO and NO2 are (9.1 ± 1.5) × 10−13, (4.3 ± 1.6) × 10−12 and (1.2 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule.  相似文献   

9.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

10.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

11.
The rate constants, k1 and k2 for the reactions of C2F5OC(O)H and n-C3F7OC(O)H with OH radicals were measured using an FT-IR technique at 253–328 K. k1 and k2 were determined as (9.24 ± 1.33) × 10−13 exp[−(1230 ± 40)/T] and (1.41 ± 0.26) × 10−12 exp[−(1260 ± 50)/T] cm3 molecule−1 s−1. The random errors reported are ±2 σ, and potential systematic errors of 10% could add to the k1 and k2. The atmospheric lifetimes of C2F5OC(O)H and n-C3F7OC(O)H with respect to reaction with OH radicals were estimated at 3.6 and 2.6 years, respectively.  相似文献   

12.
The state-selected reaction of CH(X2Πν″ = 0, 1) with H2 has been studied, in which CH was generated by IRMPD of a precursor gas, CH3OH. The subsequent evolution of CH (ν″ = 0, 1) was monitored by the sensitive LIF technique. For the ground state and vibrationally excited state CH, the reaction with H2 is found to depend on the total pressure in the sample cell at room temperature, which suggests that the reaction proceeds through an intermediate adduct, CH3. The backward dissociation process is found to depend on the buffer pressure, which can be rationalized via a collision-induced backward dissociation. The decay rates of CH (ν″ = 0, 1) due to collisions with H2 and Ar at a buffer pressure of 10 Torr are kH2 (ν″ = 1) = (2.3±0.1) × 10−1 cm3 molecule−1 s−1 and kAr (ν″ = 1) = (4.4±0.1) × 10−13 cm3 molecule−1 s−1. Possible effects of the vibrational excitation on the reaction rate of CH (ν″ = 1) are discussed.  相似文献   

13.
NH2 profiles were measured in a discharge flow reactor at ambient temperature by monitoring reactants and products with an electron impact mass spectrometer. At the low pressures used (0.7 and 1.0 mbar) the gas-phase self-reaction is dominated by a ‘bimolecular’ H2-eliminating exit channel with a rate coefficient of k3b(300 K) = (1.3 ± 0.5) × 10−12 cm3 molecule−1 s−1 and leading to N2H2 + H2 or NNH2 + H2. Although the wall loss for NH2 radicals is relatively small (kw ≈ 6–14 s−1), the contribution to the overall NH2 decay is important due to the relatively slow gas-phase reaction. The heterogeneous reaction yields N2H4 molecules.  相似文献   

14.
The rate coefficients for the reactions of C2H and C2D with O2 have been measured in the temperature range 295 K T 700 K. Both reactions show a slightly negative temperature dependence in this temperature range, with kC2H+O2 = (3.15 ± 0.04) × 10−11 (T/295 K)−(0.16 ± 0.02) cm3 molecule−1 s−1. The kinetic isotope effect is kC2H/kC2D = 1.04 ± 0.03 and is constant with temperature to within experimental error. The temperature dependence and the C2H + O2 kinetic isotope effect are consistent with a capture-limited metathesis reaction, and suggest that formation of the initial HCCOO adduct is rate-limiting.  相似文献   

15.
The radiative lifetimes of nine vibrational levels of the C3(1Πu) radical were obtained from decay time studies of the C3(1Πu1Σ+g) fluorescence induced by a tunable dye laser. The lifetimes of the different vibronic levels were found to be constant within the experimental error limits, namely, τo = (200 ± 10) ns. The collisional deactivation of the C3(1Πu) states by helium gives rate constants between 2.5 and 4 in 10−11 cm3 molecule−1 s−1 units.  相似文献   

16.
J. Femi Iyun  Ade Adegite 《Polyhedron》1989,8(24):2883-2888
At 25°C, I = 1.0 M (CF3SO3Li++CF3SO3H), [H+] = 0.034–0.274 M and λ = 453 nm, the rate equation for the oxidation of Ti(H2O), 63+ by bromine was found to be: −d/[Br2]T/dt=kK/[Br2][TiIII]/[H+]+K+kK/[Br3][TiIII]/[H++K, where k = 9.2 × 10−3 M −1 s −1 and K = 4.5 × 10−3 M. At [H+] = 1.0 M, [Br] = 0.05–0.4 M, the apparent second-order rate constant decreases as [Br] increases.

The pH-dependence of the oxidation of TiIII-edta by bromine is interpreted in terms of the change in identity of the TiIII-edta species as the pH of the reaction medium changes. The second-order rate constants were fitted using a non-linear least-square computer program with (1/k0edta)2 weighting into an equation of the form: k0edta =k1+k2K1[H+]−1+k3K1K2[H+]−2/1+K1[H+[H+−1+K1K2[H+]−2, with K1 and K2 fixed as earlier determined at 9.55 × 10−3 and 2.29 × 10−9 M, respectively, for the oxidation of bromine. k1=k2=(3.1±0.32)×103M−1s−1 k3=(2.3±0.45)×106N−1s−1.

It is proposed that these electron transfer reactions proceed by univalent changes with the production of Br2.− as a transient intermediate. An outer-sphere mechanism is proposed for these reactions. The homonuclear exchange rate for TiIII-edta+TiIV-edta is estimated at 32 M−1 s−1.  相似文献   


17.
Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20–700 Torr of N2, air, or O2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl+C6H5I)=(3.3±0.7)×10−11 cm3 molecule−1 s−1 to give chlorobenzene (C6H5Cl) in a yield which is indistinguishable from 100%. The title reaction proceeds via a displacement mechanism (probably addition followed by elimination).  相似文献   

18.
The phophorescence of biacetyl induced by an energy transfer to biacetyl from triplet benzene produced in the pulse radiolysis of benzene-biacetyl mixtures has been studied. The time required to reach the maximum intensity of phosphorescence, tmax, after the electron pulse, varies as a function of biacetyl pressure at constant benzene pressure (40 torr), which gives the lifetime of triplet benzene τ = (6.7 ± 3.2) × 10−6 s and the rate constant of the energy transfer kC6H6*(T1) + biacetyl = (1.6 ± 0.7) × 10−10 cm3 molecule−1 s−1.  相似文献   

19.
Rate coefficients for the reactions of cyclohexadienyl (c-C6H7) radicals with O2 and NO were measured at 296 ± 2 K. The c-C6H7 radicals were detected selectively by laser-induced fluorescence. The rate coefficient for the reaction of c-C6H7 with O2, (4.4 ± 0.5) × 10−14 cm3 molecule−1 s−1, was independent of the bath-gas (He) pressure (13–80 Torr). In the reaction of c-C6H7 with NO, thermal equilibrium among c-C6H7, NO, and C6H7NO was observed. The forward and reverse reactions were in the falloff region, and the equilibrium constant was (1.5 ± 0.6) × 10−15 cm3 molecule−1.  相似文献   

20.
Wang Q  Li N 《Talanta》2001,55(6):243-1225
The thiolactic acid (TLA) self-assembled monolayer modified gold electrode (TLA/Au) is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 5.11×10−3 cm s−1 at the self-assembled electrode. The electrode reaction is a pseudo-reversible process. The peak current and the concentration of NE are a linear relationship in the range of 4.0×10−5–2.0×10−3 mol l−1. The detection limit is 2.0×10−6 mol l−1. By ac impedance spectroscopy the apparent electron transfer rate constant (kapp) of Fe(CN)3−/Fe(CN)4− at the TLA/Au electrode was obtained as 2.5×10−5 cm s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号