首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of solid-state femtosecond amplifier is demonstrated that is based on quasi-phase-matched parametric amplification. Such gain media are different from conventional solid-state amplifiers in that their amplification bandwidths and pump and signal wavelengths can be engineered. Furthermore, high gain is characteristic of parametric amplification, permitting extraction of high energies without the need to resort to multiple-pass configurations. We report a parametric chirped pulse amplification system in which femtosecond pulses from a mode-locked Er-doped fiber laser system are amplified to 1-mJ energies in a single pass by use of a 5-mm-long periodically poled LiNbO(3) (PPLN) crystal. This amplifier is pumped by 5-mJ and 0.5-ns pulses at 786 nm, demonstrating that limitations associated with a low optical-damage threshold for long pump pulses can be overcome because of the high nonlinearity of PPLN and that relatively simple Q -switched lasers can be used with such parametric amplifiers.  相似文献   

2.
We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.  相似文献   

3.
A noncollinearly phase-matched optical parametric amplifier pumped by a commercial 2 MHz fiber laser is presented and discussed. The pump system allows the direct generation of a seed continuum from a sapphire plate. Clean pulses with up to 860 nJ energy and down to 14 fs pulse length can be obtained over a fundamental tuning range from 620 to 970 nm. Conversion by second- and third-harmonic generation as well as sum frequency mixing results in an extended tuning range down to well below 300 nm.  相似文献   

4.
We demonstrate intracavity frequency doubling of a standard femtosecond Ti:sapphire oscillator. The cavity is extended with a pair of focusing mirrors and a 0.5-mm-thick BBO crystal. We achieve a repetition rate of 50 MHz and simultaneously generate 22 mW of 55-fs pulses at 810 nm and 200 mW of 73-fs pulses at 405 nm, which corresponds to 4 nJ per pulse. We create a total of 330-mW, 405-nm light when pumping the Ti:sapphire crystal with 5.7 W from an Ar-ion laser, corresponding to a conversion efficiency of 5.7%. No saturation is found, which implies that higher outputs can be achieved with higher pump rates. Preliminary results from the use of blue pulses as pump in an optical parametric amplifier seeded by pulses from a photonic crystal fiber are presented. Received: 27 January 2003 / Revised version: 27 March 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +45-861/96199, E-mail: tva@chem.au.dk  相似文献   

5.
We report on the generation of pure rotational stimulated Raman scattering in a hydrogen gas hollow-core photonic crystal fiber. Using the special properties of this low-loss fiber, the normally dominant vibrational stimulated Raman scattering is suppressed, permitting pure conversion to the rotational Stokes frequency in a single-pass configuration pumped by a microchip laser. We report 92% quantum conversion efficiency (40 nJ pulses in 2.9 m fiber) and threshold energies (3 nJ in 35 m) more than 1 x 10(6) times lower than previously reported. The control of the output spectral components by varying only the pump polarization is also shown. The results point to a new generation of highly engineerable and compact laser sources.  相似文献   

6.
The results of a simple scheme to generate continuously tunable pulsed narrow-bandwidth (less than 0.1 cm (-1)) light in the infrared are presented. A periodically poled lithium niobate (PPLN) optical parametric amplifier is seeded with the filtered output of a PPLN optical parametric generator. A high-finesse Fabry-Perot etalon is used as the filtering element, giving bandwidths as narrow as 0.08 cm (-1) and tunable over 18 cm (-1) without any adjustments to the PPLN crystals. High efficiency is obtained with a 15-ns 1-kHz Nd:YAG laser, giving energies of up to 180 microJ of signal at 1.6 microm and 60 microJ of idler at 3.3 microm .  相似文献   

7.
We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed.  相似文献   

8.
A high‐power femtosecond Yb:fiber system is seeded by a phase‐locked Er:fiber source and drives an ultra‐broadband optical parametric amplifier that operates at 10 MHz repetition rate. The resulting pulses display precise control of the carrier‐envelope phase. Their 8.3 fs temporal duration corresponds to 2.3 optical cycles of the 1100 nm carrier wavelength. Focusing 200 nJ of pulse energy into widegap materials generates optical harmonics up to fifth order. Even in a perturbative regime, strong effects of the carrier‐envelope phase on the emitted spectra are observed.  相似文献   

9.
We have generated an ultrabroad mid-infrared continuum by using single-pass optical parametric generation (OPG) in orientation-patterned GaAs (OP-GaAs). The spectrum spans more than an octave, from 4.5 to 10.7 microm, measured 20 dB down from the peak. The 17.5 mm long, 0.5 mm thick, all-epitaxially-grown OP-GaAs sample with a 166.6-microm quasi-phase-matching period was pumped with 3.1-3.3 microm wavelength, 1 ps pulses up to 2 microJ in energy. The OPG threshold was observed at 55 nJ pump energy with the pump polarized along the [111] crystal direction. The slope efficiency near threshold was 51%, and the external conversion efficiency was as high as 15%.  相似文献   

10.
We report the generation of mid-infrared pulsed radiation between 2.2 and 3 μm range using a singly-resonant optical parametric oscillator (SR-OPO) based on a 40-mm-long crystal of periodically-poled LiNbO3 (PPLN) pumped by mechanically Q-switched pulses from a Nd:YAG laser, obtained by chopping the beam inside the laser resonator over a 1–10 kHz duty cycle. An appreciable reduction in pulse width as well as the number of relaxation oscillation pulses of the Nd:YAG pump laser is observed when the frequency of the Q-switch chopper is increased up to 10 kHz. Sub-nanosecond relaxation oscillation pulses of about 170–210 ns duration are generated under the width of the idler envelope varying from 4.6 to 8.55 μs. The same behavior is observed for the signal wave. A maximum extraction efficiency of 22 % is obtained for the idler, corresponding to 785 mW of output power at 10 kHz. The tuning of the signal and idler beams were performed by temperature variation of the PPLN crystal within 100–200 °C range.  相似文献   

11.
Femtosecond parametric generation in ZnGeP(2)   总被引:1,自引:0,他引:1  
We report traveling-wave optical parametric generation in short (2-mm) ZnGeP(2) samples with reduced anomalous absorption, using femtosecond pump pulses near 2 mum . The signal and the idler waves generated could be tuned from 2.5 to 10 mum , and they extend the tunability of the beta-barium borate optical parametric generator used as a pump source to the mid-infrared. At a single-pass internal conversion efficiency of 2.5% we estimate pulse durations of 75 fs (signal near 3 mum) and 200 fs (idler near 6 mum).  相似文献   

12.
何洋  陈飞  万浩华  季艳慧 《强激光与粒子束》2022,34(3):031003-1-031003-5
为实现高效率、高功率中波红外激光输出,研制基于MgO:PPLN晶体的中波红外光参量振荡器(OPO),泵浦源为基于主振荡功率放大(MOPA)结构的线偏振掺Yb光纤激光器(YDFL)。实验结果表明:YDFL可实现最高79.1 W的1064.1 nm脉冲线偏振激光输出;在YDFL泵浦下,通过优化输出镜曲率半径和泵浦光束腰直径,该OPO实现最高9.15 W的3.754 μm脉冲激光输出,光光转换效率为11.57%,重复频率为300 kHz,脉冲宽度约为110 ns。  相似文献   

13.
We demonstrate the operation of a 100 kHz noncollinear optical parametric amplifier that is pumped by just a few microjoules of 800 nm pulses with 50 fs duration. The device delivers sub-20 fs pulses tunable from 460 nm to beyond 1 microm and pulse energies up to 750 nJ when it is pumped with 7 microJ of energy. The design of the single-stage amplifier has been carefully optimized, and the design considerations are discussed.  相似文献   

14.
We report the generation of tunable high-repetition-rate optical pulses in the mid-infrared using synchronously pumped parametric oscillation in periodically poled LiNbO3 (PPLN). Using a Kerr-lens-mode-locked Ti:sapphire laser as the pump source and a PPLN crystal incorporating grating periods of 21.0–22.4 μm, we have achieved wavelength conversion in the -–4 6μm spectral range in the mid-infrared. The use of a semi-monolithic cavity design and hemispherical focusing has permitted pulse generation in the strong idler absorption region of PPLN, resulting in a simple, compact, all-solid-state configuration with a pump power threshold as low as 17 mW and mid-infrared idler powers of up to 64 mW at 9% extraction efficiency. Signal output powers of up to 280 mW at 35% extraction efficiency are available over the -–1.004 1.140μm spectral range at 80.5 MHz and pulse repetition rates at harmonics of the fundamental frequency up to 322 MHz have also been obtained. Received: 5 December 2000 / Revised version: 23 January 2001 / Published online: 27 April 2001  相似文献   

15.
A low-threshold middle-infrared(mid-IR) MgO:PPLN optical parametric generation(OPG)pumped by a laser diode(LDl end-pumped Z-type Nd:YLF laser at 1047 nm is realized with high reflectivity(HR) mirror for signal.At repetition rate of 10 kHz,the OPG threshold of 50μJ has been achieved with HR mirror for signal.Compared with the threshold without mirror,the threshold decreases by 17%.Using HR mirror for pump at output side of crystal,the threshold of 40μJ is achieved.The 2.7-4.1μm continuous tunable output is produced with seven grating periods from 28.5 to 31.5μm and temperatures from 30 to 200℃.When the incident average pump power is 3 W.the OPG idler output power is 0.46 W at 3.26 μm,which corresponds to optical-to-optical conversion efficiency up to 15.3%.  相似文献   

16.
Rotermund F  Petrov V 《Optics letters》2000,25(10):746-748
We demonstrate a novel traveling-wave-type optical parametric generator based on 1.25-microm pumping of HgGa(2)S(4) that produces tunable, high-power, transform-limited infinity 200-fs pulses in the mid-IR from 5 to 9 microm. Output idler energies on the microjoule level are obtained with maximum conversion efficiency of 11% for the amplifier stage, which is more than two times better than the results obtained with an analogous sample of the widely spread material AgGaS(2).  相似文献   

17.
Difference frequency generation between broadband visible noncollinear optical parametric amplifier (NOPA) pulses and the fundamental pump laser pulses allows the generation of ultrashort infrared pulses with passively stabilized carrier-envelope phase. A simple prism compressor for the visible NOPA pulses is sufficient to generate few-cycle pulses in the infrared and no additional compression is needed. We theoretically investigate the concept, explain the principles, and demonstrate it for high repetition rate, long pulse durations, and various wavelengths by applying it to a Ti:sapphire and an Yb:KYW-based laser systems. For the latter sub-15 fs phase stable pulses around 1.8 μm with an energy of 100 nJ are obtained at 100 kHz repetition rate.  相似文献   

18.
We discuss a dual-stage optical parametric chirped-pulse amplifier generating sub-100-fs pulses in the mid-infrared at a repetition rate of 100 kHz. The system is based on a 1064 nm pump laser and a 3–4 μm difference frequency generation seed source derived from the output of a femtosecond fiber laser amplifier. Both lasers are commercially available, are diode-pumped, compact, and allow for turn-key operation. Here, we focus our discussion on the design and dimensioning of the optical parametric chirped-pulse amplifier. In particular, we review the available gain materials for mid-infrared generation and analyze the impact of different stretching scenarios. Timing jitter plays an important role in short-pulse parametric amplifier systems and is therefore studied in detail. The geometry of the amplifier stages is optimized through a full 3-dimensional simulation with the aim of maximizing gain bandwidth and output power. The optimized system yields output pulse energies exceeding 1 μJ and an overall gain larger than 50 dB. The high repetition rate of the pump laser results in an unprecedented average power from a femtosecond parametric system at mid-infrared wavelengths. First experimental results confirm the design and the predictions of our theoretical model.  相似文献   

19.
We report a high-repetition-rate optical parametric generator (OPG) with a periodically poled lithium niobate (PPLN) crystal pumped by an acousto-optically Q-switched CW-diode-end-pumped Nd:YVO_4 laser. For the maximum 1064nm pump power of 970mW, the maximum conversion efficiency is 32.9% under the conditions of 250℃, 1064nm pulse repetition rate of 22.6kHz and pulse width of 12ns, and the PPLN OPG threshold in the collinear case is less than 23.7μJ. The output power increases with the increase of the crystal temperature. The 1485-1553nm signal wave and 3383-3754nm idler wave are obtained by changing the temperature and the angle of the PPLN crystal.  相似文献   

20.
We describe a high-gain optical parametric amplifier (OPA) and optical parametric generator (OPG) system pumped by a fiber chirped-pulse amplification source based on novel large-mode-area fiber components. 45-nJ OPG thresholds and 34% pump-signal conversion efficiencies are obtained for ~4-ps pulses. OPA gains in excess of 75 dB and pump-signal conversion efficiencies of ~39% (external) are demonstrated. Furthermore, we show that injection seeding of such high-gain parametric devices by use of a low-power continuous-wave beam results in high-power (>18-kW) picosecond pulses with a time-bandwidth produce of ~0.65, some ten times less than from a free-running OPG. Using such an approach, we obtain 2.7-ps 50-nJ pulses at 1.310 mum .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号