首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three generations of pyrenyl bis-MPA dendrimers with two different end-groups, acetonide (pyr(Gn)) or alcohol (pyr(Gn-OH)) (n = 1-3), were synthesized, and the pyrenyl group of the dendritic molecules was encapsulated in the arene ruthenium metallacages, [Ru(6)(p-cymene)(6)(OO∩OO)(3)(tpt)(2)](6+) (OO∩OO = 5,8-dioxydo-1,4-naphtaquinonato (donq) [1](6+) and 6,11-dioxydo-5,12-naphtacenedionato (dotq) [2](6+); tpt =2,4,6-tri(pyridin-4-yl)-1,3,5-triazine). The host-guest properties of [guest?1](6+) and [guest?2](6+) were studied in solution by NMR and UV-vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water-soluble host-guest systems and the pyrenyl-dendrimers was evaluated on human ovarian cancer cells.  相似文献   

2.
A series of large cationic hexanuclear metalla-prisms, [Ru(6)(p-iPrC(6)H(4)Me)(6)(tpt)(2)(donq)(3)](6+), [Ru(6)(p-iPrC(6)H(4)Me)(6)(tpt)(2)(doaq)(3)](6+) and [Ru(6)(p-iPrC(6)H(4)Me)(6)(tpt)(2)(dotq)(3)](6+), composed of p-cymene-ruthenium building blocks bridged by OO∩OO ligands (donq=5,8-dioxido-1,4-naphthoquinonato; doaq=5,8-dioxido-1,4-anthraquinonato, dotq=6,11-dioxido-5,12-naphthacenedionato) and connected by two 2,4,6-tripyridin-4-yl-1,3,5-triazine (tpt) panels, which encapsulate the guest molecules 1-(4,6-dichloro-1,3,5-triazin-2-yl)pyrene and Pd(acac)(2), have been prepared. The host-guest properties of these water-soluble delivery systems were studied in solution by NMR and fluorescence spectroscopy, providing the stability constants (K) for these host-guest systems. Moreover, the ability of the hosts to deliver the guests into cancer cells was evaluated and the uptake mechanism studied; the rate of release of the guest molecule was found to depend on the portal size of the host.  相似文献   

3.
A series of cationic metalla-cycles of the general formulae [(η(6)-p-cym)(4)Ru(4)(OO∩OO)(2)(N∩N)(2)](4+) and [(η(6)-p-cym)(4)Ru(4)(NO∩NO)(2)(N∩N)(2)](4+) has been prepared from the dinuclear arene ruthenium precursors [(η(6)-p-cym)(2)Ru(2)(OO∩OO)(2)Cl(2)] (OO∩OO = oxalato, 1,4-benzoquinonato-2,5-diolato, 1,4-naphtoquinonato-5,8-diolato, 9,10-anthraquinonato-1,4-diolato, 5,12-tetraquinonato-6,11-diolato) and [(η(6)-p-cym)(2)Ru(2)(NO∩NO)(2)Cl(2)] (NO∩NO = oxamido, oxonico) by reaction with two different bidentate linkers (N∩N = 1,2-bis(4-pyridyl)ethylene, 1,2-bis(4-pyridyl)ethane) in the presence of silver triflate. All complexes were isolated as triflate salts and characterised by NMR, infrared, UV-visible, mass spectrometry and by elemental analysis. The cytotoxicities of the tetranuclear ruthenium complexes have been established using ovarian A2780 and A2780cisR cancer cell lines. All complexes exhibit moderate to excellent activity on both the cisplatin resistant and cisplatin sensitive cells, thus suggesting a mode of action different from cisplatin.  相似文献   

4.
The novel steroidal conjugate 17-α-[2-phenylpyridyl-4-ethynyl]-19-nortestosterone (LEV-ppy) (1) and the steroid-C,N-chelate ruthenium(II) conjugate [Ru(η(6)-p-cymene)(LEV-ppy)Cl] (2) have been prepared. At 48 h incubation time, complex 2 is more active than cisplatin (about 8-fold) in T47D (breast cancer) and also shows an improved efficiency when compared to its nonsteroidal analogue [Ru(η(6)-p-cymene)(ppy)Cl] (ppy = phenylpyridine) (3) in the same cell line. The act of conjugating a levonorgestrel group to a ruthenium(II) complex resulted in synergistic effects between the metallic center and the steroidal ligand, creating highly potent ruthenium(II) complexes from the inactive components. The interaction of 2 with DNA was followed by electrophoretic mobility. Theoretical density functional theory calculations on complex 2 show the metal center far away from the lipophilic steroidal moiety and a labile Ru-Cl bond that allows easy replacement of Cl by N-nucleophiles such as 9-EtG, thus forming a stronger Ru-N bond. We also found a minimum energy location for the chloride counteranion (4(+)·Cl(-)) inside the pseudocavity formed by the α side of the steroid moiety, the phenylpyridine chelating subsystem, and the guanine ligand, i.e., a host-guest species with a rich variety of nonbonding interactions that include nonclassical C-H···anion bonds, as supported by electrospray ionization mass spectra.  相似文献   

5.
Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block [Ru(2)(μ-η(4)-C(2)O(4))(MeOH)(2)(η(6)-p-cymene)(2)](O(3)SCF(3))(2) (2) affords an unusual octanuclear incomplete prism [Ru(8)(η(6)-p-cymene)(8)(tma)(2)(μ-η(4)-C(2)O(4))(2)(OMe)(4)](O(3)SCF(3))(2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(i)PrC(6)H(4)Me). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.  相似文献   

6.
The synthesis, characterization, and water oxidation activity of mononuclear ruthenium complexes with tris(2-pyridylmethyl)amine (TPA), tris(6-methyl-2-pyridylmethyl)amine (Me(3)TPA), and a new pentadentate ligand N,N-bis(2-pyridinylmethyl)-2,2'-bipyridine-6-methanamine (DPA-Bpy) have been described. The electrochemical properties of these mononuclear Ru complexes have been investigated by both experimental and computational methods. Using Ce(IV) as oxidant, stoichiometric oxidation of water by [Ru(TPA)(H(2)O)(2)](2+) was observed, while Ru(Me(3)TPA)(H(2)O)(2)](2+) has much less activity for water oxidation. Compared to [Ru(TPA)(H(2)O)(2)](2+) and [Ru(Me(3)TPA)(H(2)O)(2)](2+), [Ru(DPA-Bpy)(H(2)O)](2+) exhibited 20 times higher activity for water oxidation. This study demonstrates a new type of ligand scaffold to support water oxidation by mononuclear Ru complexes.  相似文献   

7.
In aqueous solutions under mild conditions, [Ru(H(2)O)(6)](2+) was reacted with various water-soluble tertiary phosphines. As determined by multinuclear NMR spectroscopy, reactions with the sulfonated arylphosphines L =mtppms, ptppms and mtppts yielded only the mono- and bisphosphine complexes, [Ru(H(2)O)(5)L](2+), cis-[Ru(H(2)O)(4)L(2)](2+), and trans-[Ru(H(2)O)(4)L(2)](2+) even in a high ligand excess. With the small aliphatic phosphine L = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1(3,7)]decane (pta) at [L]:[Ru]= 12:1, the tris- and tetrakisphosphino species, [Ru(H(2)O)(3)(pta)(3)](2+), [Ru(H(2)O)(2)(pta)(4)](2+), [Ru(H(2)O)(OH)(pta)(4)](+), and [Ru(OH)(2)(pta)(4)] were also detected, albeit in minor quantities. These results have significance for the in situ preparation of Ru(II)-tertiary phosphine catalysts. The structures of the complexes trans-[Ru(H(2)O)(4)(ptaMe)(2)](tos)(4)x2H(2)O, trans-[Ru(H(2)O)(4)(ptaH)(2)](tos)(4)[middle dot]2H(2)O, and trans-mer-[RuI(2)(H(2)O)(ptaMe)(3)]I(3)x2H(2)O, containing protonated or methylated pta ligands (ptaH and ptaMe, respectively) were determined by single crystal X-ray diffraction.  相似文献   

8.
Two generations of lipophilic pyrenyl functionalized poly(benzyl ether) dendrimers (P1 and P2) have been synthesized. The thermal properties of the two functionalized dendrimers have been investigated, and the pyrenyl group of the dendritic molecules encapsulated in the arene–ruthenium metalla‐cage, [Ru6(p‐cymene)6(tpt)2(donq)3]6+ ([ 1 ]6+) (tpt=2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine; donq=5,8‐dioxydo‐1,4‐naphthoquinonato). The host–guest properties of [P1⊂ 1 ]6+ and [P2⊂ 1 ]6+ were studied in solution by NMR and UV/Vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water‐soluble host–guest systems was evaluated on human ovarian cancer cells.  相似文献   

9.
Hydrolysis of an organometallic cation, [Ru(η(6)-p-cym)(H(2)O)(3)](2+) (p-cym = 1-isopropyl-4-methylbenzene), in the presence of 0.20 M KNO(3) or KCl as supporting electrolyte was studied in detail with the combined use of pH-potentiometry, (1)H-NMR, UV-VIS and ESI-TOF-MS. Stoichiometry and stability constants of chlorido, hydroxido and mixed chlorido-hydroxido complexes formed in aqueous solution have been determined. At pH < 4.0 where hydrolysis of [Ru(η(6)-p-cym)(H(2)O)(3)](2+) is negligible with increasing chloride ion concentration two chlorido complexes, [Ru(η(6)-p-cym)(H(2)O)(2)Cl](+) and [{Ru(η(6)-p-cym)}(2)(μ(2)-Cl)(3)](+), are detectable. At pH > 5.0, in chloride ion free samples the exclusive formation of [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(3)](+) is found. However, if chloride ion is present (in the range 0-3.50 M) novel mixed chlorido-hydroxido species, [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(2)(μ(2)-Cl)](+) and [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(μ(2)-Cl)(2)](+) can also be identified at pH > 4.0. The results obtained in this study may help in rationalizing the solution behaviour of half-sandwich [Ru(η(6)-p-cym)(XY)Z] type complexes which, after dissociation of both the monodentate Z and the chelating XY, are capable of yielding the free aqua species [Ru(η(6)-p-cym)(H(2)O)(3)](2+). Our results demonstrate that different chloride ion concentrations can influence the speciation in the acidic pH range but at biologically relevant conditions (pH = 7.4, c(Cl(-)) = 0.16 M) and at c(M) = 1 μM [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(3)](+) is predominant in the absence of any coordinating ligands.  相似文献   

10.
The novel water-soluble ruthenium(II) complexes [RuCl(2)(eta(6)-arene)[P(CH(2)OH)(3)]]2a-c and [RuCl(eta(6)-arene)[P(CH(2)OH)(3)](2)][Cl]3a-c have been prepared in high yields by reaction of dimers [[Ru(eta(6)-arene)(micro-Cl)Cl](2)](arene = C(6)H(6)1a, p-cymene 1b, C(6)Me(6)1c) with two or four equivalents of P(CH(2)OH)(3), respectively. Complexes 2/3a-c are active catalysts in the redox isomerization of several allylic alcohols into the corresponding saturated carbonyl compounds under water/n-heptane biphasic conditions. Among them, the neutral derivatives [RuCl(2)(eta(6)-C(6)H(6))[P(CH(2)OH)(3)]]2a and [RuCl(2)(eta(6)-p-cymene)[P(CH(2)OH)(3)]]2b show the highest activities (TOF values up to 600 h(-1); TON values up to 782). Complexes 2/3a-c also catalyze the hydration of terminal alkynes.  相似文献   

11.
12.
The treatment of [Ru(L(OEt))(N)Cl(2)] (1; L(OEt)(-) = [Co(η(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with Et(3)SiH affords [Ru(L(OEt))Cl(2)(NH(3))] (2), whereas that with [Ru(L(OEt))(H)(CO)(PPh(3))] (3) gives the dinuclear imido complex [(L(OEt))Cl(2)Ru(μ-NH)Ru(CO)(PPh(3))(L(OEt))] (4). The imido group in 4 binds to the two ruthenium atoms unsymmetrically with Ru-N distances of 1.818(6) and 1.952(6) ?. The reaction between 1 and 3 at 25 °C in a toluene solution is first order in both complexes with a second-order rate constant determined to be (7.2 ± 0.4) × 10(-5) M(-1) s(-1).  相似文献   

13.
Sui LZ  Yang WW  Yao CJ  Xie HY  Zhong YW 《Inorganic chemistry》2012,51(3):1590-1598
A dimetallic biscyclometalated ruthenium complex, [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) (bpy = 2,2'-bipyridine; dpb = 1,4-di-2-pyridylbenzene), with a tris-bidentate coordination mode has been prepared. The electronic properties of this complex were studied by electrochemical and spectroscopic analysis and DFT/TDDFT calculations on both rac and meso isomers. Complex [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) has a similar 1,4-benzenedicyclometalated ruthenium (Ru-phenyl-Ru) structural component with a previously reported bis-tridentate complex, [(tpy)Ru(tpb)Ru(tpy)](2+) (tpy = 2,2';6',2″-terpyridine; tpb = 1,2,4,5-tetra-2-pyridylbenzene). The charge delocalizations of these complexes across the Ru-phenyl-Ru array were investigated and compared by studying the corresponding one-electron-oxidized species, generated by chemical oxidation or electrochemical electrolysis, with DFT/TDDFT calculations and spectroscopic and EPR analysis. These studies indicate that both [(bpy)(2)Ru(dpb)Ru(bpy)(2)](3+) and [(tpy)Ru(tpb)Ru(tpy)](3+) are fully delocalized systems. However, the coordination mode of the metal component plays an important role in influencing their electronic properties.  相似文献   

14.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

15.
Dennany L  Keyes TE  Forster RJ 《The Analyst》2008,133(6):753-759
Luminescence quenching of the metallopolymers [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+), both in solution and as thin films, is reported, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine). When the metallopolymer is dissolved in ethanol, quenching of the ruthenium excited state, Ru(2+*), within [Ru(bpy)(2)(PVP)(10)](2+) by [Os(bpy)(3)](2+) proceeds by a dynamic quenching mechanism and the rate constant is (1.1 +/- 0.1) x 10(11) M(-1) s(-1). This quenching rate is nearly two orders of magnitude larger than that found for quenching of monomeric [Ru(bpy)(3)](2+) under the same conditions. This observation is interpreted in terms of an energy transfer quenching mechanism in which the high local concentration of ruthenium luminophores leads to a single [Os(bpy)(3)](2+) centre quenching the emission of several ruthenium luminophores. Amplifications of this kind will lead to the development of more sensitive sensors based on emission quenching. Quenching by both [Os(bpy)(3)](2+) and molecular oxygen is significantly reduced within a thin film of the metallopolymer. Significantly, in both optically driven emission and electrogenerated chemiluminescence, emission is observed from both ruthenium and osmium centres within [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+) films, i.e. the ruthenium emission is not quenched by the coordinated [Os(bpy)(2)](2+) units. This observation opens up new possibilities in multi-analyte sensing since each luminophore can be used to detect separate analytes, e.g. guanine and oxoguanine.  相似文献   

16.
The relative affinity of the cationic triangular metallaprism, [(pCH(3)C(6)H(4)Pr(i))(6)Ru(6)(tpt)(2)(dhbq)(3)](6+) ([1](6+)), for various amino acids, ascorbic acid, and glutathione (GSH) has been studied at 37 °C in aqueous solutions at pD 7, using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). The metallaprism [1](6+), which is constituted of six (pCH(3)C(6)H(4)Pr(i))Ru corners bridged by three 1,4-benzoquinonato (dhbq) ligands and connected by two 2,4,6tri(pyridin4yl)1,3,5-triazine (tpt) triangular panels, disassembled in the presence of Arg, His, and Lys, while it remains intact with Met. Coordination to the imidazole nitrogen atom in His or to the basic NH/NH(2) groups in Arg and Lys displaces the dhbq and tpt ligands from the (p-cymene)Ru units, and subsequent coordination to the amino and carboxylato groups forms stable N,N,O metallacycles. The binding to amino acids proceeds rapidly, as determined by NMR spectroscopy. Interestingly, solutions of [1](6+) are able to catalyze oxidation of the thiol group of Cys and GSH to give the corresponding disulfides and of ascorbic acid to give the corresponding dehydroascorbic acid. Competition experiments with Arg, Cys, His, and Lys show the simultaneous formation of one single adduct, the (p-cymene)Ru-His complex, and oxidation of Cys to cystine. Furthermore, the (p-cymene)Ru-His complex formed upon the addition of His to [1][CF(3)SO(3)](6) is able to oxidize Cys to cystine much more efficiently than [1](6+). These results provide evidence against interaction with proteins as process in the release of encapsulated guest molecules. Oxidation of Cys and GSH to give the corresponding disulfides may explain the in vitro anticancer activity of [1](6+).  相似文献   

17.
Hu J  Liu G  Jiang Q  Zhang R  Huang W  Yan H 《Inorganic chemistry》2010,49(23):11199-11204
Treatment of ortho-carborane, n-butyl lithium, sulfur, and [(p-cymene)RuCl(2)](2) in varying ratio led to four new compounds (p-cymene)Ru[S(3)(C(2)B(10)H(10))(2)] (3), [(p-cymene)Ru(2)(μ(2)-S(2)C(2)B(10)H(9))(μ(3)-S(2)C(2)B(10)H(10))](2) (4), [(p-cymene)Ru](2)Ru(μ(2)-η(2):η(2)-S(2)) (μ(2)-η(2):η(1)-S(2)Cl)(μ(2)-S(2)C(2)B(10)H(10))(2) (5), and [(p-cymene)Ru](2)Ru(μ(2)-η(1):η(1)-S(2))(μ(3)-η(2):η(2)-S(4)) (μ(2)-S(2)C(2)B(10)H(10))(2) (6), respectively. In 3, the ruthenium atom is coordinated by three S atoms from a in situ generated tridentate [S(3)(C(2)B(10)H(10))(2)](2-) ligand. 4 consists of two identical dinuclear (p-cymene)Ru(2)(μ(2)-S(2)C(2)B(10)H(9))(μ(3)-S(2)C(2)B(10)H(10)) subunits which connect to each other via the Ru-Ru bond and two bridging o-carborane-1,2-dithiolate ligands. In 4, a Ru-B bond is present. 5 contains a Ru(3)(μ(2)-S)(2)(μ(2)-S(2))(μ(2)-S(2)Cl) core, and the central ruthenium atom is coordinated by seven S atoms in a distorted pentagonal bipyramidal geometry. In 5, a S-Cl bond is generated. 6 has a novel Ru(3)(μ(2)-S)(2)(μ(2)-S(2))(μ(3)-S(4)) core, and the three ruthenium atoms are connected through the two terminal sulfur atoms of the S-S-S-S chain in a μ(3) binding fashion. All the four complexes have been characterized by elemental analysis, mass, NMR, and X-ray crystallography.  相似文献   

18.
New dinuclear asymmetric ruthenium complexes of the type [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+/5+) (bpy = 2,2'-bipyridine; 5-CNphen = 5-cyano-1,10-phenanthroline) have been synthesized and characterized by spectroscopic, electrochemical, and photophysical techniques. The structure of the cation [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+) has been determined by X-ray diffraction. The mononuclear precursor [Ru(bpy)(2)(5-CNphen)](2+) has also been prepared and studied; while its properties as a photosensitizer are similar to those of [Ru(bpy)(3)](2+), its luminescence at room temperature is quenched by a factor of 5 in the mixed-valent species [(bpy)(2)Ru(II)(5-CNphen)Ru(III)(NH(3))(5)](5+), pointing to the occurrence of intramolecular electron-transfer processes that follow light excitation. From spectral data for the metal-to-metal charge-transfer transition Ru(II) --> Ru(III) in this latter complex, a slight electronic interaction (H(AB) = 190 cm(-1)) is disclosed between both metallic centers through the bridging 5-CNphen.  相似文献   

19.
The highly porous and robust [Ni(8)(OH)(4)(OH(2))(2)(4,4'-(buta-1,3-diyne-1,4-diyl)bispyrazolato)(6)](n) MOF can be used as a proof of concept for the incorporation and release of the non-conventional [Ru(p-cymene)Cl(2)(pta)] RAPTA-C metallodrug.  相似文献   

20.
A tungsten trioxide (WO(3))/tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+); bpy=2,2'-bipyridine)/poly(sodium 4-styrenesulfonate) (PSS) hybrid film was prepared by electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and PSS. A binary solution of [Ru(bpy)(3)](2+) and PTA (30 vol % ethanol in water) gradually gave an orange precipitate, possibly caused by the electrostatic interaction between the cationic [Ru(bpy)(3)](2+) and the anionic PTA. The addition of PSS to the binary PTA/[Ru(bpy)(3)](2+) solution remarkably suppressed this precipitation and caused a stable, colloidal triad solution to form. The spectrophotometric measurements and lifetime analyses of the photoluminescence from the excited [Ru(bpy)(3)](2+) ion in the colloidal triad solution suggested that the [Ru(bpy)(3)](2+) ion is partially shielded from electrostatic interaction with anionic PTA by the anionic PSS polymer chain. The formation of the colloidal triad made the ternary [Ru(bpy)(3)](2+)/PTA/PSS solution much more redox active. Consequently, the rate of electrodeposition of WO(3) from PTA increased appreciably by the formation of the colloidal triad, and fast electrodeposition is required for the unique preparation of this hybrid film. The absorption spectrum of the [Ru(bpy)(3)](2+) ion in the film was close to its spectrum in water, but the photoexcited state of the [Ru(bpy)(3)](2+) ion was found to be quenched completely by the presence of WO(3) in the hybrid film. The cyclic voltammogram (CV) of the hybrid film suggested that the [Ru(bpy)(3)](2+) ion performs as it is adsorbed onto WO(3) during the electrochemical oxidation. An ohmic contact between the [Ru(bpy)(3)](2+) ion and the WO(3) surface could allow the electrochemical reaction of adsorbed [Ru(bpy)(3)](2+). The composition of the hybrid film, analyzed by electron probe microanalysis (EPMA), suggested that the positive charge of the [Ru(bpy)(3)](2+) ion could be neutralized by partially reduced WO(3)(-) ions, in addition to Cl(-) and PSS units, based on the charge balance in the film. The electrostatic interaction between the WO(3)(-) ion and the [Ru(bpy)(3)](2+) ion might be responsible for forming the electron transfer channel that causes the complete quenching of the photoexcited [Ru(bpy)(3)](2+) ion, as well as the formation of the ohmic contact between the [Ru(bpy)(3)](2+) ion and WO(3). A multicolor electrochromic performance of the WO(3)/[Ru(bpy)(3)](2+)/PSS hybrid film was observed, in which transmittances at 459 and 800 nm could be changed, either individually or at once, by the selection of a potential switch. Fast responses, of within a few seconds, to these potential switches were exhibited by the electrochromic hybrid film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号