首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper sols stabilized by a polymer-colloid complex are studied via dynamic light scattering and transmission electron microscopy. It is shown that the polymer-colloid complex including poly(acrylic acid) and the nonionogenic polymeric surfactant poly(ethylene glycol-600-monolaurate) is an effective protector of copper nanoparticles formed via the reduction of Cu2+ ions in an aqueous medium. The sizes of sol particles of the nanocomposite consisting of the polymer-colloid complex and copper nanoparticles depend on the method of preparation of the nanocomposite. The incorporation of the copper nanoparticles being formed (an average diameter of 5 nm) into particles of the polymer-colloid complex leads to an insignificant change in the sizes of the complex particles. The same sizes are typical for particles of the nanocomposite formed during the introduction of surfactant micelles in the copper sol formed in the solution of poly(acrylic acid). The interaction of copper nanoparticles formed in an aqueous medium with surfactant micelles entails their aggregation; as a result, these nanoparticles turn out to be incorporated into large aggregates with equivalent radii of up to 100 nm. When poly(acrylic acid) is incorporated into this sol, the sizes of its particles insignificantly change apparently because of the low rate of structural rearrangements accompanying the formation of the polymer-colloid complex.  相似文献   

2.
Zero-valence copper sols are prepared at 20°C via the chemical reduction of Cu(II) ions in aqueous solutions of high-molecular-mass cationic and anionic polyelectrolytes [(poly(1,2-dimethyl-5-vinylpyridium methyl sulfate) and poly(sodium styrenesulfonate), respectively]. In both sols, metal nanoparticles are characterized by narrow size distribution, indicating the pseudomatrix mechanism of their formation; however, the diameter of spherical copper particles formed in the polycation solution (3–14 nm) is much smaller than that of particles formed in the solution of polyanion (10–30 nm). Causes of different sizes of metal nano-particles formed in solutions of polyelectrolytes with different chain charges are discussed in terms of the pseudomatrix mechanism of new phase synthesis in polymer solutions and classical electrocapillary theory.  相似文献   

3.
Recently, it was reported that the toxicity of copper particles increases with the decrease of the particle size on a mass basis. To understand this phenomenon, inductively coupled plasma mass spectrometry (ICP-MS) techniques and in vitro chemical studies were carried out to explore how they produce toxicity in vivo. The results suggest that when the sizes of particles become small and down to a nanoscale, copper becomes extremely reactive in a simulative intracorporeal environment. The nanosized copper particles consume the hydrogen ions in stomach more quickly than micron ones. These processes further convert the copper nanoparticles into cupric ions whose toxicity is very high in vivo.  相似文献   

4.
The composition and structure of products formed on a cathode upon electrodeposition of copper from copper sulfate–poly(N-vinylpyrrolidone) mixed solutions have been studied. These products have been shown to be nanocomposites consisting of copper nanoparticles and the polymer. It has been suggested that the composite is formed by a pseudotemplate mechanism via noncovalent interaction between macromolecules and copper particles growing on the cathode. The interaction is accompanied by deceleration of subsequent growth of particles because of their screening by the polymer. This decreases the sizes of copper particles in the reaction product and the rate of metal reduction. The sonication of the reaction system yields a nanocomposite sol containing nanoparticles of copper(I) oxide. The oxide results from rapid oxidation of copper metal particles that have passed to the sol with copper(II) ions.  相似文献   

5.
Composition and structure of the surface compounds formed after interaction between Cu(OH)2 supported on aerosil and bpy, py, PhOH, and H2O2 are studied. The EXAFS and electron spectroscopy methods show the main part of copper ions to remain in a hydroxide surrounding, whose structure does not change practically and does not depend on the nature of the extra ligands used. The colloidal Cu(OH)2 stabilized by starch is found to reveal the same properties as the supported one, but differs by greater sizes of hydroxide particles. Copyright 1999 Academic Press.  相似文献   

6.
Three-dimensional(3D) copper foams have been formed by electrodeposition at different nitrogen pressures and examined by scanning electron microscopy.The results indicate that an increase in system pressure leads to a decrease of the pore size of the copper foam due to the suppressed coalescence of hydrogen bubbles,while the thickness of the copper foam increases with decreasing pressure.Also,the walls around the pores on the copper foam consist of copper dendrites,and the copper dendrites are made up of copper grains with sizes less than 1 μm.The average sizes of the copper grains decrease with increasing system pressure.It has been demonstrated that copper foams with controllable 3D structure formed by electrodeposition at different pressures are comparable to those obtained by electrodeposition at normal pressure in the presence of specific additives.  相似文献   

7.
1 INTRODUCTION Silver and its compounds have received much attention due to their current and potential applica- tions in many areas[1, 2]. As a metal with the highest electrical and thermal conductivities, silver was one of the most important noble metals used in electrical industries in the last century. Several decades ago, however, the development of silver application in electronic area seemed not so quick. The fear for some undesirable phenomena involving silver, like “electrochemi…  相似文献   

8.
壳聚糖-CdS复合膜制备及其对吡啶的传感特性   总被引:10,自引:0,他引:10  
利用壳聚糖(CS)易于成膜的特点,模拟生物矿化,在有机物调制下通过异相成核生长制备了CS/CdS纳米颗粒复合膜.研究了成膜条件对膜的水热稳定性和发光性能的影响,以及CS/CdS纳米颗粒复合膜对水体中吡啶的响应特性.扫描电镜分析表明CS/CdS纳米颗粒复合膜均匀性好, CdS以物理掺杂方式均匀分布于CS薄膜中, CdS颗粒尺寸在70 nm左右.但薄膜荧光光谱位置和形状表明实际发光的CdS簇集体直径小于20 nm.由此推测电镜观察到的CdS颗粒可能是由许多CdS小颗粒聚集而成,小颗粒之间因有机物的存在而相互隔离. CS/CdS纳米颗粒复合膜的荧光发射对水体中吡啶的存在十分敏感,微量吡啶的存在会引起薄膜荧光发射急剧增强.除铜和碘离子外,水体系中其他常见离子对薄膜荧光发射没有显著影响,预期CS/CdS纳米颗粒复合薄膜有可能发展成为一种重要的水体系吡啶测定专用传感薄膜材料.  相似文献   

9.
《Supramolecular Science》1998,5(3-4):321-329
In this paper we show that the use of colloidal assemblies as templates favors the control of the size and shape of nanoparticles. As expected theoretically, the change in size and shape of copper metal nanosized particles induces changes in their optical properties. Cylindrical copper metal particles having the same size and shape can be obtained in various regions of the phase diagram when the template is made of interconnected cylinders. Self-assembly of silver metal nanoparticles is reported. Monolayers of particles organized in a hexagonal network are formed over very large domains. Small or large aggregates can also be produced, and, in these aggregates, the particles are highly organized and form pseudo-crystals with a face-centered cubic structure for various particles sizes. The optical properties of the silver nanoparticles isolated in micellar solution or self-assembled in 2D or 3D supperlattices are reported. Syntheses of magnetic fluids differing in their particle size are presented. The magnetic properties differ with the particle size.  相似文献   

10.
Nanoparticles of copper phthalocyanine oligomers (O-CuPc) with peripheral carboxylic acid groups have successfully been prepared by a simple method of liquid phase direct precipitation in the presence of different surfactants. X-ray diffraction patterns, transmission electron microscopy, and UV-visible spectra are employed to characterize the novel organic nanoparticles. The sizes and size distribution of the resulting O-CuPc nanoparticles show a noticeable dependence on surfactants. Nonionic surfactant is helpful in forming uniform nanoparticles. Also we observe a remarkable nanosize effect of the O-CuPc particles.  相似文献   

11.
Morphological and chemical characteristics were determined for airborne tungsten particles in Fallon, Nevada, a town that is distinguishable environmentally by elevated airborne tungsten and cobalt. From samples of airborne dust collected previously at six different places in Fallon, tungsten-rich dust particles were isolated and analyzed with automated electron microprobe and wavelength-dispersive spectrometry. Representative W particles were further analyzed using transmission electron microscopy. Morphologically, Fallon W particles are angular and small, with minimum and maximum sizes of < or = 1 microm and 5.9 microm in diameter, respectively. The number and size of tungsten-rich particles decrease in Fallon with distance from a hard-metal facility located near the center of town. Chemically, Fallon airborne W particles include mixtures of tungsten with cobalt plus other metals such as chromium, iron, and copper. No W-rich particles were identifiable as CaWO4 (scheelite) or MnWO4 (huebnerite). From d-spacings, Fallon particles are most consistent with identification as tungsten carbide. Based on these multiple lines of evidence, airborne W particles in Fallon are anthropogenic in origin, not natural. The hard-metal facility in Fallon processes finely powdered W and W-Co, and further investigation using tracer particles is recommended to definitively identify the source of Fallon's airborne tungsten.  相似文献   

12.
水热法合成纳米氧化铜粉体及其性能表征   总被引:14,自引:1,他引:14  
氧化铜粉体广泛用于电极材料[1 ] 、玻璃、催化剂 (载体 )等领域。粒子的超细化 ,可以显著的改善氧化铜的应用性能。制备纳米氧化铜的方法有固相合成法[2 ] 、沉淀转化法[3] 和络合沉淀法[4] 。本文采用水热法一步合成了纳米氧化铜粉体 ,所得粉体粒度均匀 ,操作简便 ,易于工业化生产。1 实验部分1 1 样品制备将硝酸铜 (分析纯 ,北京化工二厂 )配成浓度为 1 .0mol·L- 1 的溶液 ,按物质的量比为 2∶1加入浓度为 1 .0mol·L- 1 的尿素 (分析纯 ,上海试剂一厂 )溶液 ,然后在 95℃~ 1 2 5℃下加热溶液进行反应。由于水溶液在 1 0 0…  相似文献   

13.
The possibility of preparing silver and copper sols with a concentration of disperse phase of 10–3 mol/l upon the reduction of poorly soluble precursors (AgI, CuI) is studied. It is established that reduction of AgI proceeds according to the solid-state mechanism with the formation of smaller Ag particles and is kinetically retarded because of the formation (on the AgI surface) of a silver shell, thus hindering the access of the reductant to AgI. The reduction of copper iodide occurs through the solution with the formation of Cu nanoparticles, the sizes of which are comparable to those of the initial iodide particles, and is limited only by the CuI dissolution rate.  相似文献   

14.
铜基甲醇合成催化剂的失活研究   总被引:5,自引:0,他引:5  
殷永泉  李树本 《分子催化》2000,14(5):373-378
选用了两个化肥厂的失活甲醇合成催化剂,采用XRD、SEM、SEM-EDS、TEM、XPS、TRP、CO-TPD和化学吸附等方法对催化剂进行比较测试。结果表明,硫中毒、积炭、铜粒长大和杂质金属沉积等是造成甲醇合成催化剂失活的因素。由于某一种或几种因素都导致催化剂活性表面积的降低,对反应物CO吸附量减少,或造成催化剂对CO吸附能力的降低,从而降低合成甲醇反应的活性。硫中毒和铜粒长大是普遍存在的最主要因  相似文献   

15.
Chalcopyrite semiconductor CuInS2 (CIS) particles are synthesized using a simple method and low-cost solvent. Two kinds of agents are used to adjust and control the sizes and shapes of the particles. The phases, morphologies and grown processes of the products are studied. The results show that the sizes and shapes of the CIS particles can be adjusted and controlled. Furthermore, CIS thin films are fabricated using these two kinds of particles. The thin films appear different morphologies and qualities via different kinds of particles, indicating the importance of controlling the shape and size of the precursor particles.  相似文献   

16.
A procedure is developed for the synthesis of copper(II) oxide hydrosols. It is shown that the main parameters that govern the reproducibility of the synthesis results and the aggregation stability of synthesized hydrosols are the temperature of copper(II) nitrate hydrolysis and the concentration of a peptizing agent. Dispersed phase particles are shown to have a cylindrical shape with a prevailing length-to-diameter ratio of approximately 2.7.  相似文献   

17.
The energy of pair interactions between metal nanoparticles of different sizes is shown to be able to increase upon coagulation due to the additional electrostatic effect resulting from mutual heteropolar charging of the particles. The tunnel electron transfer occurring upon the collisions between particles of different sizes may be the reason for the charging. The transfer is caused by the dependence of the electron work function on the particle size. The electron transfer through the interparticle gap equalizes the Fermi levels in particles of different sizes and is associated with this dependence. Using the example of bimodal silver nanocolloids, it is shown that mutual heteropolar charging of particles with different sizes may accelerate the coagulation of polydisperse colloidal systems by an order of magnitude or more as compared with monodisperse systems, in which this effect is absent.  相似文献   

18.
The formation of copper nanoparticles in a KU-23 15/100 sulfocation-exchanger was studied. It was demonstrated that the formation of copper as assemblies from nanoparticles with sizes of 3 to 10 nm during chemical synthesis is determined by the nature of the polymer and does not depend on the amount of metal precipitated. The percolation threshold of electron conductivity, which determines the formation of electrochemical activity of nanocomposites, was discovered. It was determined that the electroreduction of molecular oxygen takes place on the surface and in the subsurface zone of a nanocomposite grain, the size of which is determined by the local concentration of metal particles in the ion-exchanger phase.  相似文献   

19.
In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738–1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (λ) of light (“small-particle limit”). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/λ ratio. We have identified the “small-particle limit” in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/λ ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver.  相似文献   

20.
Electrospray as a tool for drug micro- and nanoparticle patterning   总被引:1,自引:0,他引:1  
Carbamazepine (CBZ) microparticles of different sizes and shapes, including spheres, q-tips, elongated spheres, and tear-shaped particles, were formed by electrospraying solutions of different CBZ concentrations. The particle characteristics were determined by the interplay between jet formation, droplet breakup, solvent evaporation, and eventual particle solidification. The average particle size increased with increasing CBZ concentration, with particles of different shapes being observed for different CBZ concentrations. The cascade of sizes and shapes observed was interpreted in terms of Rayleigh instability theory as applied to charged jets and droplets, with the final sizes depending upon the time needed to evaporate the solvent sufficiently for CBZ to solidify; the lower the initial concentration of CBZ, the smaller the final droplets/particles that are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号