首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a nonlinear delayed feedback control is proposed to control chaos in an Atomic Force Microscope (AFM) system. The chaotic behavior of the system is suppressed by stabilizing one of its first-order Unstable Periodic Orbits (UPOs). At first, it is assumed that the system parameters are known, and a nonlinear delayed feedback control is designed to stabilize the UPO of the system. Then, in the presence of model parameter uncertainties, the proposed delayed feedback control law is modified via sliding mode scheme. The effectiveness of the presented methods is numerically investigated by stabilizing the unstable first-order periodic orbit of the AFM system. Simulation results show the high performance of the methods for chaos elimination in AFM systems.  相似文献   

2.
Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge–Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.  相似文献   

3.
This paper investigated stability criterion of time-delay chaotic systems via delayed feedback control (DFC) using the Lyapunov stability theory and linear matrix inequality (LMI) technique. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is given to illuminate the design procedure and advantage of the result derived.  相似文献   

4.
基于非线性动力学的基本原理,研究了经济系统中的双寡头垄断Cournot-Puu模型及其混沌控制方法.Cournot-Puu模型具有双曲线形需求函数和彼此不同的不变边际成本,离散化的差分系统显示出其复杂的非线性、分岔和混沌行为.在此基础上,结合Cournot-Puu模型的基本特征,应用延迟反馈控制方法以及自适应控制方法对该系统的混沌行为进行了研究.在结合实际经济意义的条件下,对该模型的输出进行调整并实现混沌控制.  相似文献   

5.
This study reveals the essential connections among several popular chaos feedback control approaches, such as delayed feedback control (DFC), stability transformation method (STM), adaptive adjustment method (AAM), parameter adjustment method, relaxed Newton method, and speed feedback control method (SFCM), etc. Meanwhile, the generality and practical applicability of these approaches are evaluated and compared. It is shown that for discrete chaotic maps, STM can be regarded as a kind of predictive feedback control, and AAM is actually a special case of STM which is merely effective for a particular dynamical system. The parameter adjustment method is only a different expression of the relaxed Newton method, and both of them represent just one search direction of STM, i.e., the gradient direction. Moreover, the intrinsic relation between the STM and SFCM for controlling the equilibrium of continuous autonomous systems is investigated, indicating that STM can be viewed as a special form of the SFCM. Finally, both the STM and SFCM are extended to control the chaotic vibrations of non-autonomous mechanical systems effectively.  相似文献   

6.
A detailed analysis is undertaken to explore the stability and bifurcation pattern of the nonlinear Bloch equation known to govern the dynamics of an ensemble of spins, controlling the basic process of nuclear magnetic resonance. After the initial analysis of the parameter space and stability region identification, we utilize the MATCONT package to analyze the detailed bifurcation scenario as the two important physical parameters γ (the normalized gain) and c (the phase of the feedback field) are varied. A variety of patterns are revealed not studied ever before. Next we explore the structure of the chaotic attractor and how the identification of unstable periodic orbit (UPO) can be utilized to control the onset of chaos.  相似文献   

7.
This paper presents a symbolic method for a delayed state feedback controller (DSFC) design for linear time-periodic delay (LTPD) systems that are open loop unstable and its extension to incorporate regulation and tracking of nonlinear time-periodic delay (NTPD) systems exhibiting chaos. By using shifted Chebyshev polynomials, the closed loop monodromy matrix of the LTPD system (or the linearized error dynamics of the NTPD system) is obtained symbolically in terms of controller parameters. The symbolic closed loop monodromy matrix, which is a finite dimensional approximation of an infinite dimensional operator, is used in conjunction with the Routh–Hurwitz criterion to design a DSFC to asymptotically stabilize the unstable dynamic system. Two controllers designs are presented. The first design is a constant gain DSFC and the second one is a periodic gain DSFC. The periodic gain DSFC has a larger region of stability in the parameter space than the constant gain DSFC. The asymptotic stability of the LTPD system obtained by the proposed method is illustrated by asymptotically stabilizing an open loop unstable delayed Mathieu equation. Control of a chaotic nonlinear system to any desired periodic orbit is achieved by rendering asymptotic stability to the error dynamics system. To accommodate large initial conditions, an open loop controller is also designed. This open loop controller is used first to control the error trajectories close to zero states and then the DSFC is switched on to achieve asymptotic stability of error states and consequently tracking of the original system states. The methodology is illustrated by two examples.  相似文献   

8.
This paper is devoted to study the problem of controlling chaos in Chen chaotic dynamical system. Two different methods of control, feedback and nonfeedback methods are used to suppress chaos to unstable equilibria or unstable periodic orbits (UPO). The Lyapunov direct method and Routh–Hurwitz criteria are used to study the conditions of the asymptotic stability of the steady states of the controlled system. Numerical simulations are presented to show these results.  相似文献   

9.
From the view of bifurcation and chaos control, the dynamics of modified Chua’s circuit system are investigated by a delayed feedback method. Firstly, the local stability of the equilibria is discussed by analyzing the distribution of the roots of associated characteristic equation. The regions of linear stability of equilibria are given. It is found that there exist Hopf bifurcation and Hopf-zero bifurcation when the delay passes though a sequence of critical values. By using the normal form method and the center manifold theory, we derive the explicit formulas for determining the direction and stability of Hopf bifurcation. Finally, chaotic oscillation is converted into a stable equilibrium or a stable periodic orbit by designing appropriate feedback strength and delay. Some numerical simulations are carried out to support the analytic results.  相似文献   

10.
卫星编队飞行轨道和姿态控制研究   总被引:1,自引:0,他引:1  
卫星编队飞行是一种卫星应用的新概念,通过一系列造价更便宜的小卫星的分布式合作,代替大卫星实现复杂功能.在编队飞行一些应用中,要求受控卫星对目标卫星保持要求的相对位置和姿态以观察目标卫星的特定面,特别的,目标卫星可能是失效的.研究在近地轨道如何控制追踪星在失效的目标卫星附近飞行以追踪目标卫星特定面 的问题,给出了相对姿态和一阶近似的相对轨道动力学方程.基于线性反馈和Liapunov稳定性理论设计了控制策略.进一步的,考虑目标卫星转动惯量的不确定性,通过自适应控制的方法,获得正确的转动惯量比率.数值仿真算例验证了该控制方法的有效性.  相似文献   

11.
One of the recently developed approaches for control of chaos is the minimum entropy (ME) control technique. In this method an entropy function based on the Shannon definition, is defined for a chaotic system. The control action is designed such that the entropy as a cost function is minimized which results in more regular pattern of motion for the system trajectories. In this paper an online optimization technique using particle swarm optimization (PSO) method is developed to calculate the control action based on ME strategy. The method is examined on some standard chaotic maps with error feedback and delayed feedback forms. Considering the fact that the optimization is online, simulation results show very good effectiveness of the presented technique in controlling chaos.  相似文献   

12.
Some asymptotic stability criteria are derived for systems of nonlinear functional differential equations with unbounded delays. The criteria are described as matrix equations or matrix inequalities, which are computationally flexible and efficient. The theories are then applied to the stabilization of time-delay systems via standard feedback control (SFC) or time-delayed feedback control (DFC). Several examples are given to illustrate the results.  相似文献   

13.
In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance.  相似文献   

14.
In this paper the problem of chaos control in single mode lateral oscillations of spinning disks is studied. At first, using the harmonic balance method, one of the periodic orbits of system is evaluated. Then proposing a nonlinear feedback strategy a control law is presented for chaos elimination by tracking the mentioned periodic solution. It is shown that although the system is not input-state feedback linearizable, by defining an output signal and using the input–output linearization method, the objective of complete periodic orbit tracking is achieved. The sufficient condition for this purpose is presented, and the performance of proposed method is examined by numerical simulation.  相似文献   

15.
We developed the control technique for (non)linear oscillators when repellors are stabilized by adjusting the system to energy levels corresponding to their stable counterparts. The technique does not require knowledge of the system equations. Two control strategies are possible. Following the first one, we simply test the systems by changing the feedback strength. This strategy does not require any computation of the control signal, and, hence, can be useful for control as well as identification of unknown systems. If the desired target can be identified (say, from the system time series), one can use another strategy based on goal-oriented control of the desired target. We analyze how the perturbation shape can be tuned so as to preserve the system natural response and discuss how to calculate the minimal strength of the perturbation required for stabilization of a priori chosen orbit. Generally, the control represents addition of an extra nonlinear damping to the system. In two limits of the perturbation slope, it manifests itself in (i) changing the oscillator natural damping; (ii) suppressing (enhancing) the external driving force. In the case of large deviations between phases of the chaotic oscillator and the driving force, only first scenario holds. Generalization of the technique to the case of oscillator networks and 3D autonomous dynamical systems is considered.  相似文献   

16.
This paper presents control studies of delayed dynamical systems with the help of the method of continuous time approximation (CTA). The CTA method proposes a continuous time approximation of the delayed portion of the response leading to a high and finite dimensional state space formulation of the time-delayed system. Various controls of the system such as LQR and output feedback controls are readily designed with the existing design tools. The properties of the method in frequency domain are also discussed. We have found that time-domain methods such as semi-discretization and CTA, and other numerical integration algorithms can produce highly accurate temporal responses and dominant poles of the system, while missing all the fast and high frequency poles, which explains why many numerical methods can be applied to study the stability of time-delayed systems, and may not be a good tool for control design. Optimal feedback controls for a linear oscillator, collocated and non-collocated feedback controls of an Euler beam, and an experimental demonstration are presented in the paper.  相似文献   

17.
Active chaos control of a tapping mode atomic force microscope (AFM) model via delayed feedback method is presented. The feedback gain is obtained and adapted according to a minimum entropy (ME) algorithm. In this method, stabilizing an unstable fixed point of the system Poincare map is achieved by minimizing the entropy of points distribution on the Poincare section. Simulation results show the feasibility of the proposed method in applying the delayed feedback technique for chaos control of an AFM system.  相似文献   

18.
A study of the dynamical behavior of a two-cell DC–DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.  相似文献   

19.
In this article, by a nonstandard finite-difference method we obtain the general time delayed feedback control numerical discrete scheme for a delayed neural network model. Firstly, the local stability of the equilibria point is discussed according to the Neimark–Sacker bifurcation theory. Then, from the point of view of control, for any step-size, a general time delayed feedback control numerical algorithm is introduced to delay the onset of the Neimark–Sacker bifurcation at a desired point by choosing appropriate control parameters. This controller can deal with the general system that the natural equilibrium cannot be given by analytic expression. Finally, numerical examples are provided to illustrate the theoretical results. The results show that the time delayed feedback numerical scheme is better than a polynomial function time delayed feedback method.  相似文献   

20.
This paper considers the problem of positive real control for two-dimensional (2-D) discrete delayed systems in the Fornasini–Marchesini second local state-space model. Attention is focused on the design of dynamic output feedback controllers, which guarantee that the closed-loop system is asymptotically stable and the closed-loop transfer function is extended strictly positive real. We first present a sufficient condition for extended strictly positive realness of 2-D discrete delayed systems. Based on this, a sufficient condition for the solvability of the positive real control problem is obtained in terms of a linear matrix inequality (LMI). When the LMI is feasible, an explicit parametrization of a desired output feedback controller is presented. Finally, we provide a numerical example to demonstrate the application of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号