首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

2.
Abstract— A sodium dodecyl sulfate-Photosystem I (PSI) complex has been prepared and characterized with respect to its electron acceptors. Component X and iron-sulfur centers A and B are absent from this preparation but the intermediate electron acceptor (A1) is present. Flash-induced absorbance changes at 25°C show charge separation, followed by a back-reaction with a half-time of 5 µs. The spectrum of the flash-induced change from 350 to 550 nm indicates a contribution from the intermediate electron acceptor, A1, as well as from P700+. EPR studies show that A1 is associated with a free-radical signal having a g-value of 2.0025 and a linewidth of 12 gauss. A, would appear to be associated with a monomeric form of either Chi α or pheophytin a.  相似文献   

3.
Abstract—In the presence of Mg2+ and adenosine triphosphate (ATP), a rapid. light-induced, light-scattering transient is observed from bovine rod outer segments (ROS). This light-scattering transient we have labelled 'A'. Ca2+ cannot replace Mg2+. nor can guanosine triphosphate (GTP) replace ATP. 'A' is observed at ATP concentrations as low as a few μM.
The half-time of 'A', 60 ms at 20° and 20 ms at 37°, is consistent with a process possibly involved in visual transduction.
'A' has the action spectrum of rhodopsin bleaching and its amplitude is strictly proportional to the fraction of rhodopsin bleached per flash. 'A' can be regenerated by 11- cis retinal.
Inhibition studics with ATP analogues, which cannot be hydrolysed and fail to evoke an 'A' response, reveal that an ATP hydrolysis process has to precede illumination in order for 'A' to occur.
On the basis of the above findings. it is proposed that there is a Mg2+ dependent ATPase in ROS that allows the disk membrane to assume a new membrane state which, upon illumination, is altered. giving rise to the structural phenomenon monitored as light-scattering transient 'A'.  相似文献   

4.
Abstract— The fluoroquinolone antibiotics can induce skin photosensitivity in some patients and this has been ascribed to the generation of reactive oxygen species, such as singlet oxygen (O2[1Δg]). We have studied the photochemical properties of the different ionized forms of the fluoroquinolone norfloxacin upon complexation with Mg2+ and Ca2+ ions, as it is proposed that the antibiotic exists mainly as a complex in the blood plasma. We found that the norfloxacin cation (pH < 6) shows no photodegradation after UVA irradiation and has a low quantum yield of O2(1Δg) generation. The norfloxacin cation does not complex. Ca2+ or Mg2+ ions; when these ions are added to the solution, we observed no changes in the fluorescence quantum yields (φflu) and singlet oxygen yields (φΔ). In contrast, the neutral (6 ± pH > 8.5) and anionic (pH > 9) forms of norfloxacin are able to complex calcium and magnesium, and their generation of O2 (1Δg) is decreased by complexation. The neutral zwitterionic form and the anionic form also quench singlet oxygen by both chemical and physical pathways regardless of complex formation, while physical quenching is observed for the cation. At pH > 7.4, norfloxacin photobleaches and complexation to Ca2+ and Mg2+ increases the rate at which photobleaching occurs. Thus, both the pH of the medium and complexation with metal cations may affect the phototoxic potential of this antibiotic.  相似文献   

5.
Abstract— Difference spectrum for the reduction of A2, a bound secondary electron acceptor of photo-system I, in the thylakoid membranes of a thermophilic blue-green alga, Synechococcus sp., was determined by subtracting the difference spectrum of P700 photooxidation from the difference spectrum for flash-induced absorption changes due to oxidation of P700 and reduction of A2, or by measuring light-induced absorption changes under reducing conditions where reduced A2 accumulates. The spectrum showing a broad bleaching with two maxima at 420 and 440 nm indicates that A2 is an iron-sulfur center different from P430.  相似文献   

6.
Abstract— A simple procedure for the isolation and purification of 124 kDa phytochrome (phyA) from etiolated Avena seedlings has been developed employing ammonium sulfate back-extraction. After solubilization of the ammonium sulfate precipitate (250 g/L) an additional ammonium sulfate fractionation with 17 g per 100 mL rather than column chromatography was performed. After several steps of the "washing-out" procedure with 100 mM phosphate buffer, phytochrome was solubilized in 10 m M phosphate buffer. The resulting phytochrome had a specific absorbance ratio (SAR = A666/A28o) ranging from 0.60 to 0.85. These values are equivalent to those of phytochrome preparations after hydroxyla-patite chromatography-ammonium sulfate back-extraction. The total isolation-purification time was 8 h and yield of the chromoprotein was 50% higher than the yield using conventional techniques. The phytochrome preparation, after application to a Toyopearl HW-65S gel filtration column, produced very pure 124 kDa phyA with a specific absorbance ratio greater than 1.00. The spectral characteristics are identical to those described for the best of the highly purified native chromoprotein preparations.  相似文献   

7.
Alternating adsorption of polyanions and polycations on porous supports provides a convenient way to prepare ion-selective nanofiltration membranes. This work examines optimization of ultrathin, multilayer polyelectrolyte films for monovalent/divalent cation separations relevant to water softening. Membranes composed of five bilayers of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) on porous alumina supports allow a solution flux of 0.85 m3/(m2 day) at 4.8 bar, and exhibit 95% rejection of MgCl2 along with a Na+/Mg2+ selectivity of 22. Similar results were obtained in Na+/Ca2+ separations. PSS/poly(diallyl-dimethylammonium chloride) (PDADMAC) films permit higher fluxes than PSS/PAH systems due to the higher swelling of films containing PDADMAC, but the Mg2+ rejection by PSS/PDADMAC membranes is less than 45%. However, capping PSS/PDADMAC films with a bilayer of PSS/PAH yields Mg2+ rejections and Na+/Mg2+ selectivities that are typical of pure PSS/PAH membranes. Separation performance can be optimized through control over deposition conditions (pH and supporting electrolyte concentration) and the charge of the outer layer since Donnan exclusion is a major factor in monovalent/divalent cation selectivity. Streaming potential measurements demonstrate that the magnitude of positive surface charge increases with increasing concentrations of Mg2+ in solution or when the outer polycation layer is deposited from a solution of high ionic strength.  相似文献   

8.
Abstract— Using excise sections of oat first-internodes, a dual effect of blue light can be demonstrated on elongation when the sections are first irradiated in distilled H2O, then incubated with gibberellic acid (GA). At low light energies (230 ergs/cm2 per sec, for 2 min), a pretreatment with blue light enhances the GA effect above the elongation it can produce in the dark. At high energies (650 ergs/cm2/sec for 45 min), the same wavelengths cause an inhibition of the GA-induced elongation. An action spectrum for the two effects show a maximum near 435 mμ in both cases. Neither light effect is visible when indoyl-3-acetic acid is used instead of GA. Several physiological effects distinguish the two blue effects. The promotive effect is most marked in the young regions of the mesocotyl, whereas the maximum inhibitive effect is located in slightly older tissues. Time-course experiments showed that the promotive effect is partly due to an extension of the duration of elongation. The inhibitory effect is only temporary and vanishes about 30 hr after the beginning of the experiment. The promotive effect of blue light resembles the effect of far-red light, but the former can be observed with gibberellins A2, A4, A5, A6 and A7 which are practically inactive after an irradiation with far-red light. The inhibitory effect of blue light is different from the red-light effect as shown by the time-course experiments.  相似文献   

9.
–Methylviologen (MV2+) adsorbed on cellulose could be reduced photochemically in the solid phase sensitized by tris(2,2'-bipyridyl)ruthenium(II) complex, [Ru(II)(bpy)3], using disodium ethylene-diaminetetraacetic acid (Na2EDTA) as a reducing agent. Formation of the cation radical (MV +.) was confirmed by visible and EPR spectra. The MV+. formed on cellulose was remarkably stable against air oxidation and rapidly accumulated even by the irradiation under air. Water adsorbed on the cellulose greatly retarded the photoreaction. Action spectrum showed that the excitation of Ru(II)(byp)3 is responsible for the photochemical reaction. The quenching of the emission from Ru(II)(bpy)*3 by MV2+. indicated that a primary photochemical reaction occurs between Ru(II)(bpy)*3 and MV2+. The main reaction path is the reduction of MV2+ by Ru(II)(bpy)3, giving MV+. and Ru(III)(bpy)3, followed by the reduction of Ru(III)(bpy)3 to Ru(II)(bpy)3 with Na2EDTA, which in turn is oxidized to give carbon dioxide.  相似文献   

10.
Abstract. The quantum yields of HCI (φHC1) formation have been measured for the photolysis of N -methyldiphenylamine (MeDPA), triphenylamine (TPA) and diphenylamine (DPA) in the presence of CCl4 in polar solvents. The quantum yields of N-methylcarbazole formation (φmφca) have also been determined for the system MeDPA-CCl4. With increasing CCl4 concentration, φHCl increases as φMeCA decreases, and φHCl reaches maximum values 2.7 at 1 M CCl4. Using laser photolysis, transient spectra have been recorded for MeDPA in the absence and presence of CCl4 in polar and non-polar solvents, and for TPA. Transient absorption due to the triplet states and photocyclization products (without CCU), exciplexes, the (C6H5)2 NCHi radical, the MeDPA+ cation radical, the (TPA+., CCl4) ion pair, and the TPA+ cation radical have been identified. The mechanistic implications of these results are discussed.  相似文献   

11.
Abstract— The opsin of the visual pigment (P521) of the Tokay gecko rapidly regenerates four spectrally different photopigments with the 9-cis and 11-cis isomers of both the vitamin A,- and A2-aldehydes. The opsin displays the classic stereospecificity for both A1- and A2-series of isomers. The two photopigments regenerated with 9-cis- and ll-cw-3-dehydroretinals respond to chloride and nitrate ions as do the comparable pigments formed with 9-cis- and 11-ris-retinal. The result is a family of pigments absorbing with spectral maxima ranging from 464 to 540 nm, a span of some 3000 cm-1. The photosensitivity of all four pigments was determined and found to be in relative order: 100% (11-cis-A2), 77% (11- cis -A2), 36% (9- cis -A,) and 14% (9- cis -A2).  相似文献   

12.
Abstract— The conventional flash photolysis of 1-methylindole in aqueous media was studied at Λexcitation≥290 nm. The transients observed 20 μs after excitation consisted mainly of the radical cation (R+). the hydrated electron (e-aq) and the triplet state (T). Electron counting experiments indicate that photoionization is the only source of R+ with e-aq/R+= 1.07±0.09 in neutral media. Quenching of the R+ yield with H+ indicates that the fluorescent state is the precursor to 80% of the photoionization events with the remainder probably arising from a prefluorescent state. The triplet decays with a lifetime of 29 μs in deaerated neutral media. This decay is unchanged by N2O saturation, but T reacts with acrylamide with k ≥2.8 × 109 M -1. In 2 M Br-, R+ and T yields are increased by factors of 2–3. Consideration of fluorescence quenching and T enhancement by Br-permits an estimate of φIsc between 0.33 and 0.49. The increased R+yield at high Br-concentrations cannot be accounted for by induced photoionization or triplet state reactions.  相似文献   

13.
Although the first reactive oxygen species (ROS) formed during irradiation of photosensitized cells is almost invariably singlet molecular oxygen (1O2), other ROS have been implicated in the phototoxic effects of photodynamic therapy (PDT). Among these are superoxide anion radical (O2), hydrogen peroxide (H2O2) and hydroxyl radical (OH). In this study, we investigated the role of H2O2 in the pro-apoptotic response to PDT in murine leukemia P388 cells. A primary route for detoxification of cellular H2O2 involves the peroxisomal enzyme catalase. Inhibition of catalase activity by 3-amino-1,2,4-triazole led to an increased apoptotic response. PDT-induced apoptosis was impaired by addition of an exogenous recombinant catalase analog (CAT- skl) that was specifically designed to enter cells and more efficiently localize in peroxisomes. A similar effect was observed upon addition of 2,2'-bipyridine, a reagent that can chelate Fe+2, a co-factor in the Fenton reaction that results in the conversion of H2O2 to OH. These results provide evidence that formation of H2O2 during irradiation of photosensitized cells contributes to PDT efficacy.  相似文献   

14.
Abstract— Previous resonance Raman spectroscopic studies of bovine and octopus rhodopsin and bathorhodopsin in the C–C stretch fingerprint region have shown drastically different spectral patterns, which suggest different chromophore-protein interactions. We have extended our resonance Raman studies of bovine and octopus pigments to the C=C stretch region in order to reveal a more detailed picture about the difference in retinal-protein interactions between these two pigments. The C=C stretch motions of the protonated retinal Schiff base are strongly coupled to form highly delocalized ethylenic modes located in the 1500 to 1650 cm−1 spectral region. In order to decouple these vibrations, a series of 11,12-D2-labeled retinals, with additional 13C labeling at C8, C10, C11 and C14, respectively, are used to determine the difference of specific C=C stretch modes between bovine and octopus pigments. Our results show that the C9=C10 and C13=C14 stretch mode are about 20 cm−1 lower in the Raman spectrum of octopus bathorhodopsin than in bovine bathorhodopsin, while the other C=C stretch modes in these two bathorhodopsins are similar. In contrast, only the C9=C10 stretch mode in octopus rhodopsin is about 10 cm−1 lower than in bovine rhodopsin, while other C=C stretches are similar.  相似文献   

15.
Abstract— Low temperature spectroscopy has been used to characterize microsomal fractions obtained from cauliflower inflorescences ( Brasska oleracea L.) by differential centrifugation and partition in an aqueous polymer two-phase system. The plasma membrane-enriched fraction (U3) was found to contain one dominant b -cytochrome, which could be reduced both by blue light and by dithionite. An action spectrum of the blue light-induced absorbance change [LIAC, Δ(A430—A410)] associated with the reversible reduction of this b -type cytochrome indicated that the primary light-receptor was a flavin-like compound. Another microsomal fraction (L3) containing membranes from mitochondria, endoplasmic reticulum and other organelles also contained light-reducible cytochrome. One of these could be identified as cytochrome c oxidase, and another may be identical to cytochrome b 5 of the endoplasmic reticulum.  相似文献   

16.
Abstract— The kinetics of the proflavine-sensitized photoreduction of methyl viologen (MV2+) to the blue radical cation (MV.+) are presented. The triplet excited state of proflavine accepts an electron from EDTA to form the singly-reduced species of proflavine (PH.); this species donates an electron to either the oxidized (MV.+) or the singly–reduced (MV.+) species of the bipyridyl. MV2+ can be reoxidized by oxygen to MV2+ but is decomposed by H2O2. The doubly-reduced form can not be reoxidized either by oxygen or by peroxide. Potassium iodide inhibits the photoreduction of MV2+ by competing with it as reactant for the singly-reduced form of proflavine (PH.). The mechanism presented may be analogous to that occurring in the reduction of MV2+ by illuminated spinach chloroplasts; its herbicidal action can not be ascribed to the formation of peroxides.  相似文献   

17.
Abstract— Photolysis of polyribobromouridylic acid with 313 nm light at neutral pH caused extensive debromination and a loss of A280 (280–nm absorbance) without comparable increase in A260. At an exposure of 190μE/cm 2 , strand breakage occurred on the average of one break every 170 BrU residues. Little if any pyrimidine hydrate was produced. Exhaustive RNase hydrolysis of photolysed polymer gave a mixture of mononucleotides and oligonucleotides. The mononucleotide fraction was found to be composed of unaltered BrUMP and contained little if any UMP. Irradiation of the polymer at alkaline pH caused little or no debromination or spectral change.  相似文献   

18.
Abstract— The fluorescent properties of the rare-earth ion, Tb3+ have been utilized to probe the nature of cation-binding sites associated with thylakoid membranes. At low concentrations (< 100μ M ), Tb3+ was observed to inhibit the increase in chlorophyll a fluorescence normally seen on adding 5 m M MgCl2 (or 100 m M NaCl) to isolated, broken chloroplasts. We also observed under these conditions, the appearance of a new band around 280 nm in the excitation spectrum of Tb3+ ion fluorescence. However, similar changes in Tb3+ fluorescence could be observed in the presence of a membrane-free preparation of chloroplast coupling factor protein (CF1). From this and other results it is concluded that changes in Tb3+ fluorescence reflect an association of the ion with CF1 followed by intermolecular transfer of excitation energy from protein ligands (possibly un-ionized tyrosine residues) to the lanthanide. The interaction of Tb3+ with sites which control chlorophyll a fluorescence does not seem to modify Tb3+ fluorescence, suggesting that in this case, simple membrane-bound ligands such as carboxyl or phosphate groups are involved.  相似文献   

19.
Photosensitivity (Kλ) of a visual pigment is the product of the molecular absorption coefficient (αλ) and the quantum efficiency for photoconversion (γ). Among the invertebrates, many visual pigments are stable not only in the rhodopsin (R) conformation but also as the photoproduct, metarhodopsin (M), We here employ a method for determining the photosensitivities of the two stable pigments of a rhodopsin-metarhodopsin pair, using kinetic analysis of fluorescence from metarhodopsin combined with measurements of spectral absorption made before and after saturation at the isosbestic wavelength of the pigment pair. A curve fitting technique, in which a theoretical function is scaled for best fit to the measured absorption spectrum of the photosteady-state mixture, yields values for the photosensitivity of rhodopsin at λ.max, the ratio of quantum efficiencies for rhodopsin—metarhodopsin interconversion, and the fractional composition of the steady-state mixture. With knowledge of the molecular extinction coefficient, the absolute values of quantum efficiency can be calculated. For crayfish ( Orconectes, Procambarus ) rhodopsin, measured in isolated rhabdoms, Kmax= 1.05 x 10-16 cm2 at 535 nm with >7λR→M0.69. These values are similar to the photosensitivity and quantum efficiency of bleaching of vertebrate rhodopsins in digitonin solution (Dartnall, 1972). For the metarhodopsin, Kmax= 1.02 x 10-16 cm2 at 510 nm, and λM-R= 0.49.  相似文献   

20.
Abstract— The P700 chlorophyll a -protein complex (CPI) isolated from green plants was oriented in aqueous solutions using pulsed electric fields of up to 6700 V cm-1. The electric linear dichroism spectrum is reported in the range of 400–720nm. Positive peaks in the linear dichroism Δ A = A I - A 1 (where AI and A1 are the absorbance components in which the polarizer orientation is parallel and perpendicular with respect to the electric field. respectively) are observed at 443 and 686 nm. The ΔA signal at 686 nm is discussed in terms of either a specialized chlorophyll form absorbing at 686 nm. or due to an exciton component absorbing at the same wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号