首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of sodium sulfide additions (from 5 × 10?6 to 2 × 10?5 M) on the kinetics of gold dissolution in cyanide solutions of the following composition, M: 0.1 KCN, 0.02 KAu(CN)2, 0.5 K2SO4, pH 10–13 is studied. Hydrosulfide ions are shown to exert a strong catalytic effect on the dissolution kinetics of this metal in a potential range where their adsorption is accompanied by the formation of polysulfides (?0.2 < E < 0.4 V). The reaction acceleration depend on the potential and is 100-fold for E ? 0.1 V. The effect becomes more pronounced as the concentration of hydrosulfide ions increases to 10?4 M and is almost pH-independent in the pH range from 10 to 13. An attempt to explain the found relationships is undertaken.  相似文献   

2.
《Electroanalysis》2005,17(4):299-304
This work describes a very sensitive and selective voltammetric procedure for the determination of platinum. Instead of commonly used hydrazine, thiosemicarbazide as a component of supporting electrolyte was applied. The method is based on adsorption of platinum‐thiosemicarbazone complex, formed in situ in voltammetric cell from thiosemicarbazide and formaldehyde, coupled with a hydrogen catalytic reaction at a hanging mercury drop electrode. The linear relation between platinum concentration and height of analytical signal was observed up to 1.5×10?9 mol L?1 with the detection limit calculated as 1.5×10?13 mol L?1 (3 s of the blank) after 50 s of accumulation time. The effect of various interferences from other ions was studied. Described method was applied for platinum determination in hydroponically cultivated plants after microwave decomposition.  相似文献   

3.
Copper(II) and mercury(II) act as catalyst and inhibitor, respectively, for the oxidation of 4,4'-dihydroxybenzophenone thiosemicarbazone by hydrogen peroxide in an ammonium chloride medium. The combination of these two effects and blocking of the catalytic cycle by EDTA are used as the basis for titrimetric methods for individual and simultaneous titrations of mercury and copper or cadmium, with catalytic end-point detection. Mixtures can be resolved in the mole ratio range 20.1–4.1 for Cu/Hg and 27.1–1.1 for Cd/Hg. Titrations are viable for 10?7?10?6 M mercury(II) and 10?6-10?5 M copper(II) or cadmium(II).  相似文献   

4.
《Electroanalysis》2006,18(6):573-578
The electroanalytical detection of trace mercury(II) at gold ultra‐microelectrode arrays is reported. The arrays consist of 256 gold microelectrodes of 5 μm in diameter in cubic arrangements which are separated from their nearest neighbor by 100 μm. The array was utilized in nitric acid using linear sweep voltammetry where a linear response from mercury additions over the range 10 μg L?1?200 μg L?1 (10?8?10?6 M) was observed with a sensitivity and detection limit of 0.11 nC/μg L?1 and 3.2 μg L?1 (16 nM) respectively from using a deposition time of 30 s at ?0.2 V (vs. SCE). This methodology was explored in 0.1 and 1 M chloride media over the mercury range 10 μg L?1?200 μg L?1 (5×10?8?10?6 M) where similar sensitivities of 0.087 nC/μg L?1 and 0.078 nC/μg L?1 were observed with an identical detection limit. The protocol is demonstrated to be useful for the determination of mercury for analysis of environmental water samples.  相似文献   

5.
Introducing sodium sulfide (about 10?5 M) into acidic thiocarbamide solutions reduces the gold reduction overpotential. The reaction rate passes through a maximum at a potential of 0.1 V. The overpotential depends on the sulfide ion concentration and the time of electrode exposure to solution prior to the beginning of scanning. Transients of potential measured on a renewable gold electrode in thiocarbamide electrolytes containing catalytically active species served as the basis for calculations of the coefficient of trapping of sulfide ions by the growing gold deposit. The kinetics of gold electrodeposition at fixed surface coverages with adsorbed sulfide ions θ is studied. It is shown that at θ = const, the dependence of the reaction rate on the overpotential is described by the Tafel equation. It is shown that with an increase in θ, the effective values of exchange current and transfer coefficient increase from i 0 ≌ 10?5 A/cm2 and α ≌ 0.25 in pure solutions to α ≌ 0.5 and i 0 ≌ 10?4 A/cm2 at θ ≥ 0.3 and then remains virtually unchanged. The reaction order decreases in the absolute magnitude, remaining negative. Thus for θ ≌ 0, p k = ?logi/?logc = ?1, whereas for θ ≥ 0.3, p k = ?0.3. A possible explanation is proposed for the catalytic effect of the sulfide ion adsorption on the mechanism of the gold reduction from acidic thiocarbamide electrolytes.  相似文献   

6.
《Analytical letters》2012,45(15):2965-2975
ABSTRACT

Albendazole is determined by differential-pulse adsorptive cathodic stripping voltammetry at a hanging mercury drop electrode using the reduction peak of its copper(II) complex at ?0.28V at an accumulation potential 0.0V vs. Ag/AgCl electrode. The optimum conditions of pH, accumulation potential and accumulation time were studied. The calibration graph for the determination of albendazole was linear in the range 3.0X10?8 - 9X10?7M with a relative standard deviation of 2.8%. The detection limit was 1.0X10?8M after 180s accumulation at 0.0V. The effect of common excipients and metal ions on the peak height of albendazole was studied. The presence of Cu2+ ions forms a stable complex with albendazole which is strongly adsorbed at the mercury electrode surface. The method was applied to the determination of the drug in commercially available dosage forms.  相似文献   

7.
The effect of potential on the rate of gold dissolution in the cyanide solutions in the presence of sulfide ions is studied. The dependences of current on the time after the electrode surface renewal were measured under the potentiostatic conditions. The majority of experiments were performed in the solution of the following composition, M: 0.1 KCN, 0.1 KOH, 0.01 KAu(CN)2, (1.5–2) × 10?5 Na2S at 23°C. It is shown that, at the potentials more positive than ?0.1 V (NHE), the rate of gold dissolution starts to increase as soon as the surface is renewed, which is associated with high-rate chemisorption of catalytically active sulfide ions. At E < ?0.1 V, the chemisorption proceeds slowly, and a considerable increase in the current takes much time. Therefore, in the potentiodynamic measurements, at E < ?0.1 V, no catalytic effect of sulfide ions is observed. When the ratio between the concentrations of sulfide and cyanide ions is decreased, the potential, which, by convention, bounds the aforementioned ranges, shifts in the positive direction. Plausible explanations for these regularities are proposed.  相似文献   

8.
As shown by quartz-crystal microbalance measurements, in the potential range from 0.0 to 0.55 V (NHE), sulfide ions adsorbed on the gold electrode surface accelerate the electrode reaction of anodic dissolution of gold in acidic thiocarbamide solutions. The microbalance determination of kinetic parameters at a constant electrode surface coverage with sulfide ions includes a special procedure developed for the determination of the gold dissolution rate. The conditions (the potential range and the potential scan rate) of independence of the dissolution rate from the diffusion limitations associated with the ligand delivery is determined. Under these conditions, the polarization curve is shown to be linear on semilogarithmic coordinates and correspond to the Tafel equation. In this potential range, the transfer coefficient α and the reaction order with respect to the ligand p are determined at a constant electrode surface coverage θ with adsorbed sulfide ions. It is shown that with the transition from the surface coverage with sulfide ions θ = 0.1 to θ = 0.8, the transfer coefficient α changes from 0.25 to 0.55, the exchange current (i 0) changes from 10?5 to 5 × 10?5 A/cm2, and the effective reaction order p with respect to the ligand changes from 0.2 to 1.3. The mentioned changes are associated not only with the acceleration of gold dissolution in the presence of chemisorbed sulfide ions but also with the changeover in the mechanism of this process. Quartz-crystal microbalance data on the gold dissolution rate qualitatively agree with the results of voltammetric measurements of a renewable gold electrode. A possible version of explanation of the catalytic effect of sulfide ion adsorption on the gold dissolution is put forward.  相似文献   

9.
《Electroanalysis》2006,18(2):186-194
The complex of osmium tetroxide with 2,2′‐bipyridine has been utilized as a probe of DNA structure and an electroactive marker of DNA in DNA hybridization sensors. It produces several voltammetric signals, the most negative of them has been observed only at mercury electrodes. This signal is of catalytic nature affording a high sensitivity of DNA determination. The catalytic current due to evolution of hydrogen in voltammetry of DNA modified by complex of osmium tetroxide with 2,2′‐bipyridine (DNA‐Os,bipy) was studied. Solid amalgam electrodes (modified with mercury menisci) of silver (m‐AgSAE), copper (m‐CuSAE), gold, and of combined bismuth and silver, were used as possible substitutes for mercury electrodes. Besides the hanging mercury drop electrode (HMDE), the catalytic current was observed only on m‐AgSAE and m‐CuSAE. Electrodes of gold and bismuth amalgams did not give the catalytic current. The detection limit of DNA‐Os,bipy on HMDE was 0.1 ng mL?1 (RSD=2.3 %, N=11), and on m‐AgSAE 0.2 ng mL?1 (RSD=3.1%, N=11). The m‐AgSAE was successfully applied as a detection electrode in double‐surface DNA hybridization experiments offering highly specific discrimination between complementary (target) and nonspecific DNAs, as well as determination of the length of a repetitive DNA sequence. The m‐AgSAE has proved a convenient alternative to the HMDE or carbon electrodes used for similar purposes in previous work.  相似文献   

10.
The general possibility of analysing metals and alloys by dissolution of the sample in mercury and recording the anodic voltammogram is examined for the determination of silver in some metals. In order to obtain good separation of the silver peak from the anodic limit, acetonitrile is used in the supporting electrolyte. If the main component of the sample is more noble than mercury, analysis is simple and takes ? 20 min. Significant amounts of base metals in samples must be removed from the amalgam prior to the anodic stripping; optimum conditions for the removal are given. The detection limits found for the determination of silver in gold and lead and in indium amalgam are 4 × 10?3, 4 × 10?4 and 4 × 10?6 % respectively. Dissolution of the lead button in mercury seems to be a successful alternative to the cupellation procedure. Silver in mercury does not form intermetallic compounds with gold.  相似文献   

11.
A novel highly sensitive electrochemiluminescence (ECL) detection protocol for mercury(II) ions was developed. Based on the strong and stable thymine? thymine mismatches complexes coordination chemistry, mercury(II) ions can specifically bind to a designed DNA strand, leading to the release of the complimentary DNA strand. The released DNA strand was then captured by magnetic beads modified with specific DNA, and then through the formation of DNA‐linked luminol‐Au nanoparticles (NPs) superstructure, a specific ECL system for mercury(II) ions was developed. Using 3‐aminopropyl‐triethoxysilane as an effective enhancer, the ECL system can detect Hg2+ ion within a linear range from 2.0×10?10 mol L?1 to 2.0×10?8 M, with a detection limit as low as 1.05×10?10 M (3σ). Moreover, this ECL system is highly specific for Hg2+, without interference from other commonly coexisted metal ions, and it can be used for the analysis of real samples.  相似文献   

12.
A liquid ion-exchange electrode containing a complex of mercury(II) with N-(O,O-diisopropylthiophosphoryl)thiobenzamide in carbon tetrachloride is described. The electrode shows excellent sensitivity and good selectivity. The slope of the calibration graph is 29.0 mV/pHg2+ in the pHg2+ in the pHg2+ range 2–15.2 in mercury(II) ion buffers. The electrode can be used for determination of 5 × 10?5–10?2 M Hg(II) in the presence of 10?2 M Cu(II), Ni(II), Co(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(III), Cr(III), Bi(III) or Al(III) ions and in the presence of 10?3 M Ag(I) ions. It can bealso used for end-point detection in titrations with EDTA of 10?3–10?4 M mercury(II) at pH 2.  相似文献   

13.
Ammonium (2′,3′-dihydroxy pyridyl-4′-azo)benzene-4-arsonate (DHP-4A) provides a simple, rapid, and sensitive spectrophotometric microdetermination of mercury(II) in aqueous solution. The magenta colored 1:2 metal to ligand complex formed has a molecular extinction coefficient 6.25 × 104 liters mol?1 cm?1 at the maximum absorption of 535 nm in highly alkaline medium. Beer's law is obeyed up to 3.8 ppm and Sandell's sensitivity (for an absorbance of 0.001) is 0.0032 μg of mercury(II)/cm2. The mercury(II) complexed with DHP-4A has also been used in microdetermination of sulfide ions using ligand exchange reaction. The optimum concentration range of sulfide ions which can reproducibly be determined is 0.16-5.05 μg/10 ml and sensitivity of sulfide ions determination (for an absorbance 0.001) is 7.3 × 10?4 μg/cm2.  相似文献   

14.
Stability constant for mercury binding by commercial and natural humic acids (HA) were determined using a new potentiometric mercury(II) sensor based on dithiosalicylic acid modified carbon paste electrode. The sensor present a high selective and sensitive response to mercury(II) ions, and a low detection limit of 1.8×10?8 M. The potentiometric titrations curves of humic acids against mercury(II) ions were modeled. For 1.00×10?7 to 3.00×10?4 M mercury(II) ion concentration levels the results are consistent with the presence of two different binding sites in the humic acid macromolecule. The strongest binding sites (log K1 ranging from 10.1 to 6.8) are probably due to interaction with carboxylic acid and amine groups in the molecule, whereas weakest binding sites (log K2 ranging from 8.8 to 4.5) can be associated to phenolic groups.  相似文献   

15.
Cylindrical gold film micro-electrodes are easily produced by plasma-sputtering of gold onto carbon fiber electrodes. The micro-electrodes produced were found to maintain their cylindrical geometry indefinitely, unlike gold wire electrodes of similar dimensions. Application of these electrodes in differential-pulse anodic stripping voltammetry provides a method for quantifying trace levels of mercury(II). Up to 100 μg l?1 Hg(II) the area of the mercury stripping peak varied linearly with mercury concentration; the detection limit was 3.7 μg l?1. With more than 100 μg l?1 Hg(II) a new mercury stripping peak grows in at less positive potentials; its peak height is linear with Hg(II) concentration.  相似文献   

16.
A new kind of secondarily formed peaks was found in cyclic and stripping voltammetry in neutral sulphate, perchlorate and nitrate supporting electrolytes containing some divalent cations and a substance (for example O2), the reduction of which gives as a by-product OH? ions. The hydroxides deposited in the vicinity of the mercury electrode, in the course of a cathodic scan, react during the anodic scan according to the reaction Hg+Me(OH)2=Hg(OH)2+Me2++2e forming a new, separate anodic peak.It was found that silver exerts a catalytic effect on the reduction of NO3? ions on the mercury electrode. In neutral nitrate supporting electrolyte containing Ag+ ions the hydroxides of some cations (Cd2+, Zn2+, Mn2+, Co2+ and Ni2+) were deposited during the cathodic scan or during the preelectrolysis. Afterwards, in the course of the anodic scan, a new peak, of the kind described above, was observed. The same effect was formerly interpreted, for Zn2+ and Cd2+, as evidence for the formation of intermetallic compounds, AgZn and AgCd.  相似文献   

17.
《Electroanalysis》2005,17(9):755-761
This paper proposes a simple methodology for mercury quantification in natural water by stripping chronopotentiometry at constant current, using gold (film) electrodes constructed from recordable CDs in stationary cell. The proposed method allows the direct measurement of labile mercury in natural waters. To quantify total mercury, a robust and low cost UV irradiation system was developed for the degradation of organic constituents of water. The proposed system presents such advantages as excellent sensitivity, low cost, versatility, and smaller dimensions (portability for on‐field applications) when compared with other techniques (ICP, GFAAS, fluorimetry) traditionally utilized for mercury quantification. A large linear region of responses was observed, situated over the range 0.02–200 μg L?1. Various experimental parameters were optimized and the system allowed quantifications in natural samples, with detection limit of 8 ng L?1 and excellent reproducibility (RSD of 1.4% for 48 repetitive measurements using a 10 μg L?1 mercury solution). Different metal ions were evaluated, including copper, as possible interferences on stripping mercury signals. Applications of the new method were demonstrated for the analysis of certified and groundwater samples spiked with a known amount of mercury and for the quantification of methylmercury in synthetic oceanic water, originally utilized for fishes contamination experiment.  相似文献   

18.
A coated-wire gold(III)-selective electrode based on the 1,2,4,6-tetraphenyl-pyridinium tetrachloroaurate(III) ion-pair is described. The response is Nernstian in the gold concentration range 10?2–3 × 10?6 (slope 59.0 mV/pAu). Of the 22 ions tested, only the interference of thallium(III) is important. The electrode is applied to the determination of gold in an Ag-Pd-Au alloy with satisfactory results.  相似文献   

19.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

20.
A method for the rapid separation of copper(II) traces on metallic mercury is proposed. The separation is rendered possible by the reduction of Cu(II) to Cu(I) on mercury in the presence of iodide ions followed by the adsorption of the uncharged complex, Cu(I), on Hg0. After a minute of agitation, this adsorption is quantitative (90–100%) for initial concentrations of Cu(II) between 10?4 to 10?6 M and iodide cone, of 10?2 to 10?3 M at pH 3. The volumes of the aqueous solutions are of the order of 3–10 ml and those of the drops of mercury between 0.5–1 ml. The tests were made using the isotope 64Cu (T 1/2 = 12.8 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号