首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
3-芳甲酰基香豆素类化合物光引发聚合的研究   总被引:2,自引:0,他引:2  
<正> 近年来,3-芳甲酰基香豆素类化合物,作为有效的用于高分子光引发交联的光敏剂和光共引发剂已受到重视,Williams等曾对这类化合物在高分子薄膜中的聚合能力进行了研究,认为其作为光敏剂效果甚佳。本文研究了光敏剂(scn.1)-三乙胺(TEA)体系引发甲基丙烯酸甲酯(MMA)的光聚合,通过与二苯酮(BP)-TEA体系比较,指出了前者具有更高的引发效率,并从光引发聚合体系中光敏剂的激发态性质揭示了这一过程  相似文献   

2.
<正>申请公布号:CN104174185A申请公布日:2014.12.03申请人:北京美正生物科技有限公司摘要本发明涉及一种孔雀石绿免疫亲和柱制备方法及其用途。该免疫亲和纯化柱利用蛋白G偶联到琼脂糖凝胶上载体,然后用抗孔雀石绿的抗体与琼脂糖上的蛋白G偶联。再利用交联剂对结合孔雀石绿抗体的蛋白G–琼脂糖凝胶载体进行交联。用交联后的载体制备免疫亲和柱。该纯化柱  相似文献   

3.
李明乐  彭孝军 《化学学报》2016,74(12):959-968
光动力治疗(Photodynamic therapy,PDT)作为一种有别于传统癌症治疗方式的新型疗法,近些年来受到了科学家们越来越多的关注.它凭借着自身创伤性小,毒性低微,适用性好,可协同手术治疗以及可重复治疗等独特优势,在许多肿瘤的治疗方面有着广泛的应用.本文简要概述了光动力疗法的原理以及光敏剂的发展历程,并对理想光敏剂的特点作了总结.目前,以酞菁类化合物为主的第三代光敏剂已经成为光动力疗法的研究热点,然而如何提高光敏剂分子的靶向性达到精准的光动力治疗仍然是亟待解决的问题.因此,主要综述了近年来靶向性酞菁类光敏剂的研究进展,并对未来光敏剂的重点研究方向做出了展望.从目前来看,如何克服癌症低氧微环境的限制,发展Type I型不依赖氧的体系以及光穿透力强的靶向光敏剂在光动力治疗方面存在着巨大的潜质,有望成为新一代十分优良的光动力疗法用光敏剂.  相似文献   

4.
《化学进展》2021,33(9):1473-1481
光动力治疗因其无创、可控和不易产生耐药性等显著优点,成为一种新型的肿瘤靶向治疗模式。光敏化过程涉及光敏剂对氧分子的光激活反应,然而实体肿瘤的乏氧环境严重限制了传统有机光敏剂的疗效。金属铱配合物具有良好的光物理和光化学性质,是理想的新一代光敏剂,近些年,铱光敏剂被发现可以应用于乏氧肿瘤的光动力治疗。本文总结了近些年金属铱配合物应用于乏氧肿瘤光动力治疗的研究;同时介绍了基于铱配合物的乏氧纳米复合体系的构建和乏氧肿瘤的光动力治疗研究,为开发新型高效的乏氧肿瘤治疗光敏剂及其载体提供参考。  相似文献   

5.
光动力治疗因其无创、可控和不易产生耐药性等显著优点,成为一种新型的肿瘤靶向治疗模式。光敏化过程涉及光敏剂对氧分子的光激活反应,然而实体肿瘤的乏氧环境严重限制了传统有机光敏剂的疗效。金属铱配合物具有良好的光物理和光化学性质,是理想的新一代光敏剂,近些年,铱光敏剂被发现可以应用于乏氧肿瘤的光动力治疗。本文总结了近些年金属铱配合物应用于乏氧肿瘤光动力治疗的研究;同时介绍了基于铱配合物的乏氧纳米复合体系的构建和乏氧肿瘤的光动力治疗研究,为开发新型高效的乏氧肿瘤治疗光敏剂及其载体提供参考。  相似文献   

6.
光动力抗菌光敏剂的研究进展   总被引:1,自引:0,他引:1  
光动力抗菌化学疗法是一种结合光敏剂分子和可见光产生的活性氧物种杀灭病原微生物的抗感染治疗方法.活性氧物种能够与致病菌中的多种生物活性分子反应,这一特性使得微生物不易对该方法产生耐药性,这也是该方法近年来备受关注的主要原因.本文重点介绍了近年来光动力抗菌化学疗法领域新型光敏剂药物的研究进展,包括卟啉类衍生物、BODIPY化合物、共轭聚合物和钌多吡啶配合物.  相似文献   

7.
《高分子学报》2021,52(6):646-662
光交联制备水凝胶技术具有非物理接触以及时空精确可控等优势,在细胞3D培养/打印以及组织工程和再生医学领域具有广阔的应用前景.当前,光交联水凝胶的制备主要基于光引发自由基交联反应、光点击交联反应或光偶联交联反应.本文分别介绍了以上交联反应各自的技术发展史、应用现状以及相关的优势和技术瓶颈.还着重介绍了本课题组在光交联水凝胶领域开展的研究与转化工作,主要包括提出了利用光笼分子的光剪切释放活性基团触发偶联交联的非自由基光交联策略,即光偶联反应交联策略.该策略实现了光交联水凝胶的低毒、可控构筑,同时赋予了光交联水凝胶技术的原位组织黏附特性,为该技术的最终临床转化奠定了基础.  相似文献   

8.
具有创伤小、毒性低、选择性好、无耐药性等优点的光动力疗法已被广泛应用于癌症治疗研究。然而,多数光敏剂存在水溶性差易聚集、肿瘤组织选择性差的问题,且其激发光都在可见或紫外光范围内,组织穿透深度较浅导致治疗深度不够,限制了光动力疗效。稀土上转换纳米粒子具有低生物毒性、高化学稳定性、强组织穿透力等优点,可作为将近红外光转换成紫外/可见光的发光材料和光敏剂载体,因此,构建上转换光动力诊疗体系为增强光动力疗效提供新思路。本文介绍了上转换光动力诊疗体系的构建方法,包括物理吸附法、物理包封法、共价偶联法,并分析了其应用于光动力抗癌研究的优缺点,最后总结并展望了其存在的挑战及未来发展方向。  相似文献   

9.
郭玲香  李菊平  刘志洋  李全 《化学进展》2022,34(11):2489-2502
光动力治疗是一种基于光敏剂和光照的安全无创性治疗方法,在癌症治疗和杀菌等方面具有广阔的应用前景。光敏剂在光照激发下与氧气作用会生成高反应活性的活性氧。在细胞中过量的活性氧会氧化损伤蛋白质、核酸和脂质等细胞组分,诱导细胞凋亡或坏死。新兴的聚集诱导发光型光敏剂在分子聚集状态下光照激发能发射强的荧光,同时高效地产生活性氧,解决了传统光敏剂在分子聚集时荧光猝灭的问题,易实现成像指导的光动力治疗,近年来备受关注。线粒体作为细胞能量工厂富含氧气,是理想的光动力治疗靶点。本文总结了靶向癌细胞线粒体的聚集诱导发光型光敏剂的分子类型和设计策略,以及其在光动力治疗肿瘤方面的应用。  相似文献   

10.
光动力治疗是新兴的非侵入性癌症治疗方法。纳米材料以其独特的结构以及光物理、光化学性质成为可用于光动力治疗的光敏剂。根据纳米材料的不同种类,分别对无机非金属纳米材料、无机金属纳米材料、有机小分子纳米材料以及有机聚合物纳米材料等的构建策略及其在光动力治疗肿瘤中的应用进行综述。展望了纳米材料在未来肿瘤光动力治疗中的挑战和发展方向。为新一代纳米光敏剂的构建提供创新思路,并扩展其在癌症治疗中的潜力。  相似文献   

11.
Photoimmunotherapy is an emerging treatment modality that uses photothermal, photodynamic and photochemical processes to fight against cancer by eliciting a robust host immune response. Recently,various nanoformulations of biomaterials have been rationally designed as highly effective photosensitive agents, immunoadjuvants or carriers to enhance phototherapeutic efficacy, boost immune stimulation, amplify nano-permeability and monitor cancer progression in situ. Nevertheless, relying solely on a...  相似文献   

12.
This perspective article mainly focuses on the development and applications of a pseudobond ab initio QM/MM approach to study enzyme reactions. The following aspects of methodology development are discussed: the approaches for the QM/MM covalent boundary problem, an efficient iterative optimization procedure, the methods to determine enzyme reaction paths, and the approaches to calculate free energy change in enzyme reactions. Several applications are described to illustrate the capability of the methods. Finally, future directions are discussed.  相似文献   

13.
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid‐phase extraction and in‐tube solid‐phase microextraction, while solid‐phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.  相似文献   

14.
We review high-performance liquid chromatography (HPLC) methods for the determination of two major statins used in clinical treatment – simvastatin and atorvastatin – in various fields of application, including bio-analytical assays, pharmaceutical assays and environmental applications.

Statin molecules are known to be susceptible to interconversion of the lactone and acidic forms, so it is necessary to consider this phenomenon during method development. We highlight liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods, as they have become a method of choice in bio-analytical and environmental applications. We compare the methods from the point of view of sensitivity. We discuss selection of the precursor ion for performing selected reaction monitoring (SRM) in MS detection and sample preparation.  相似文献   


15.
A principle objective in chemotherapy is the development of modalities capable of selectively destroying malignant cells while sparing normal tissues. One new approach to selective photochemotherapy, antibody-targeted photolysis (ATPL) uses photosensitizers (PS) coupled to monoclonal antibodies (MAbs) which bind to cell surface antigens on malignant cells. Selective destruction of human T leukemia cells (HBP-ALL) was accomplished by coupling the efficient PS chlorin e(6) to an anti-T cell MAb using dextran carriers. Conjugates with chlorin: MAb ratios of 30:1 retained > 85% MA b binding activity, and had a quantum yield for singlet oxygen production of 0.7 +/- 0.1, the same as that of free chlorin e(6). Cell killing was dependent on the doses of both MAb-PS and 630-670 nm light and occurred only in target cell populations which bound the MAb. On the order of 10(10) singlet oxygen molecules were necessary to kill a cell. A second approach to specific photochemotherapy, selective carcinoma cell photolysis (SCCP), relies on preferential accumulation of certain cationic PS by carcinoma cell mitochondria. We have evaluated several classes of cationic dyes, and in the case of N,N'-bis-(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC) and some of its analogs, have demonstrated highly selective killing of human squamous cell, bladder and colon carcinoma cells in vitro. In isolated mitochondria, EDKC uptake and fluorescence depended on membrane potential, and the dye specifically photosensitized damage to Complex I in the electron transport chain. N,N'-bis-(2-ethyl-1,3-dioxolane)-kryptocyanine and some of its analogs accumulated within subcutaneous xenografts of human tumors in nude mice with tumor:skin ratios > 8. Photoirradiation caused significant inhibition of tumor growth, without cutaneous phototoxicity.  相似文献   

16.
Because of the widespread use, increased application of new formulations and immense impact on organisms and ecology surfactants are still in the focus of analytical chemistry. The development of methods with higher selectivity and lower detection limits is important to meet the requirements of greater responsibility for health of people and environment. Efficient separation methods, like HPLC, GC and CE, in combination with sensitive detection, like MS, are to be preferred over collective techniques which can suffer from interfering components. A review on trace analysis of ionic and neutral surfactants including sample preparation steps is presented, considering especially those methods which provide information about homologous and isomeric distribution of surfactant mixtures. Examples for the determination of linear alkylbenzene sulfonates in river water by HPLC and CE are discussed to show the capability of these methods for environmental analyses. As future trends increased applications of LC/MS (very high sensitivity) and also of CE (robustness and possibility for rapid method development) can be predicted.  相似文献   

17.
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.  相似文献   

18.
This paper reviews published methods of sample preparation, determinand purification, and the determination of boron concentration and isotopic composition in a sample. The most common methods for the determination of B concentration are spectrophotometric and plasma-source spectrometric methods. Although most spectrophotometric methods are based on colorimetric reactions of B with azomethine-H, curcumin, or carmine, other colorimetric and fluorometric methods have also been used to some extent. These methods, in general, suffer from numerous interferences and have low sensitivity and precision. Application of nuclear reaction and atomic emission/absorption spectrometric (AES/AAS) methods has remained limited because these methods have poor sensitivity and suffer from serious memory effects and interferences. Among a large number of published nuclear reaction methods only prompt-γ spectrometry has been of practical use. The prompt-γ method can determine B concentration in intact samples, which makes this method especially useful for some medical applications, including boron neutron capture therapy. However, this is a time-consuming method and not suitable for detection of low levels of B. Inductively coupled plasma optical emission spectrometry (ICP-OES) created a new dimension in B determination because of its simplicity, sensitivity, and multielement capability. However, it suffers interferences and is not adequately sensitive for some nutritional and medical applications involving animal tissues that are naturally low in B. All methods involving the measurement of B isotopic composition require a mass spectrometer. Thermal ionization mass spectrometry (TIMS) and secondary ion mass spectrometry (SIMS) have been used to measure isotopic composition of B; however, these methods are time consuming and require extensive sample preparation and purification. Development of inductively coupled plasma mass spectrometry (ICP-MS) not only overcame most of the drawbacks of earlier methods, but also its capabiltiy of measuring B isotopes made possible (1) B concentration determination by isotope dilution, (2) verification of B concentration by isotope fingerprinting in routine analysis, and (3) determination of total B concentration and B isotope ratio for biological tracer studies in the same run. Therefore, plasma source MS appears to be the method of choice among present-day technologies.  相似文献   

19.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most important and powerful instrumental analytical techniques for structural elucidation of unknown small and large (complex) isolated and synthesized compounds in organic and inorganic chemistry. X-ray crystallography, neutron scattering (neutron diffraction), and NMR spectroscopy are the only suitable methods for three-dimensional structure determination at atomic resolution. Moreover, these methods are complementary. However, by means of NMR spectroscopy, reaction dynamics and interaction processes can also be investigated. Unfortunately, this technique is very insensitive in comparison with other spectrometric (e.g., mass spectrometry) and spectroscopic (e.g., infrared spectroscopy) methods. Mainly through the development of stronger magnets and more sensitive solenoidal microcoil flow probes, this drawback has been successfully counteracted. Capillary NMR spectroscopy increases the mass-based sensitivity of the NMR spectroscopic analysis up to 100-fold compared with conventional 5-mm NMR probes, and thus can be coupled online and off-line with other microseparation and detection techniques. It offers not only higher sensitivity, but in many cases provides better quality spectra than traditional methods. Owing to the immense number of compounds (e.g., of natural product extracts and compound libraries) to be examined, single microcoil flow probe NMR spectroscopy will soon be far from being sufficiently effective as a screening method. For this reason, an inevitable trend towards coupled microseparation–multiple microcoil flow probe NMR techniques, which allow simultaneous online and off-line detection of several compounds, will occur. In this review we describe the current status and possible future developments of single and multiple microcoil capillary flow probe NMR spectroscopy and its application as a high-throughput tool for the analysis of a large number of mass-limited samples. The advantages and drawbacks of different coupled microseparation–capillary NMR spectroscopy techniques, such as capillary high-performance liquid chromatography–NMR spectroscopy, capillary electrophoresis–NMR spectroscopy, and capillary gas chromatography–NMR spectroscopy, are discussed and demonstrated by specific applications. Another subject of discussion is the progress in parallel NMR detection techniques. Furthermore, the applicability and mixing capability of tiny reactor systems, termed “microreactors” or “micromixers,” implemented in NMR probes is demonstrated by carbamate- and imine-forming reactions.  相似文献   

20.
Immunophototherapy of cancer combines the specificity of a monoclonal antibody (MAb) to an overexpressed tumor marker with the phototoxic properties of a conjugated dye. Aluminum tetrasulfophthalocyanine (AlPcS4) was covalently coupled to a 35A7 MAb directed against carcinoembryonic antigen (CEA) via a five-carbon spacer chain (A1) to yield conjugates with a molar ratio ranging from 5 to 16 mol of AlPcS4 per mol of 35A7 MAb. Conjugates were labeled with radioiodine for characterization. The immunoreactivity of the conjugates, determined in a direct binding assay on CEA coupled to sepharose, was not modified by the coupled AlPcS4A1 molecules. In vivo, these conjugates were evaluated in nude mice bearing human colon carcinoma xenografts (T380). 35A7 MAb-(AlPcS4A1)5, 35A7 MAb-(AlPcS4A1)12 and 35A7 MAb-(AlPcS4A1)16 conjugates displayed a tumor uptake of 35 +/- 5.0%, 40 +/- 5.7% and 32 +/- 3.3% of the injected dose per gram of tumor tissue, respectively, corresponding to an uptake of 97%, 104% and 91% as compared to that of the unconjugated 35A7 MAb. In each experimental group, the tumor-to-normal tissue ratios obtained with the conjugates were almost identical to those obtained with unconjugated 35A7 MAb. Average values of 1.8, 7 and about 30 were obtained for blood, liver and muscle, respectively. Phototoxic efficacy of the 35A7 MAb-(AlPcS4A1)12 conjugate was demonstrated in vitro on the LoVo cell line giving a 91% growth inhibition for a 2.50 micrograms/mL AlPcS4A1 concentration. We conclude that these conjugates demonstrate clear in vivo tumor-seeking capacity and in vitro photocytotoxic properties. Such conjugates could thus be promising candidate drugs for clinical photodynamic therapy of cancers expressing CEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号