首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stepwise method is described for the accurately controlled growth of Pt nanoparticles supported on ordered mesoporous carbons (Pt-OMC) by the nanocasting of carbon and metal precursors in the pore channels of mesoporous silicas functionalized with Si-H groups. Results obtained from N2 adsorption/desorption isotherms and transmission electron microscopy showed well-dispersed Pt nanoparticles (2-3 nm) on Pt-OMC with high surface area (837 m2 g−1) and regular pore channels (2.9 nm), which facilitate reactant/product diffusion. X-ray diffraction and X-ray photoelectron spectroscopy indicated that Pt nanoparticles in the Pt-OMC sample were mostly present in the metallic form of a face-centered cubic (fcc) crystalline structure. The Pt-OMC catalyst was found to have superior electrocatalytic properties during oxygen reduction reaction as compared to typical commercial electrocatalysts.  相似文献   

2.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

3.
Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.  相似文献   

4.
Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs.  相似文献   

5.
以三嵌段共聚物为模板剂, 利用溶剂挥发法合成了具有立方相的含锆介孔氧化硅材料, 并对其结构进行了表征, 初步研究了其生成机理.  相似文献   

6.
We report for the first time the synthesis of free-standing mesoporous carbon films with highly ordered pore architecture by a simple coating-etching approach, which have an intact morphology with variable sizes as large as several square centimeters and a controllable thickness of 90 nm to ~3 μm. The mesoporous carbon films were first synthesized by coating a resol precursors/Pluronic copolymer solution on a preoxidized silicon wafer and forming highly ordered polymeric mesostructures based on organic-organic self-assembly, followed by carbonizing at 600 °C and finally etching of the native oxide layer between the carbon film and the silicon substrate. The mesostructure of this free-standing carbon film is confirmed to be an ordered face-centered orthorhombic Fmmm structure, distorted from the (110) oriented body-centered cubic Im3?m symmetry. The mesoporosity of the carbon films has been evaluated by nitrogen sorption, which shows a high specific BET surface area of 700 m(2)/g and large uniform mesopores of ~4.3 nm. Both mesostructures and pore sizes can be tuned by changing the block copolymer templates or the ratio of resol to template. These free-standing mesoporous carbon films with cracking-free uniform morphology can be transferred or bent on different surfaces, especially with the aid of the soft polymer layer transfer technique, thus allowing for a variety of potential applications in electrochemistry and biomolecule separation. As a proof of concept, an electrochemical supercapacitor device directly made by the mesoporous carbon thin films shows a capacitance of 136 F/g at 0.5 A/g. Moreover, a nanofilter based on the carbon films has shown an excellent size-selective filtration of cytochrome c and bovine serum albumin.  相似文献   

7.
《天然气化学杂志》2012,(3):275-281
Precise control of the pore sizes for porous carbon materials is of importance to study the confinement effect of metal particles because the pore size in nanosize range will decide the physical and chemical properties of the metal nanoparticles.In this paper,we report a new approach for the synthesis of iron doped ordered mesoporous carbon materials with adjustable pore size using Fe-SBA-15 as hard template and boric acid as the pore expanding reagent.The pore size can be precisely adjusted by a step of 0.4 nm in the range of 3-6 nm.The carbonization temperature can be lowered to 773 K due to the catalytic role of the doped iron.The present approach is suitable for facile synthesis of metal imbedded porous carbon materials with tunable pore sizes.  相似文献   

8.
An improvement in the photodegradation performance for dyes due to interaction between carbon and titania in a self‐assembled mesoporous C? TiO2 composite catalyst, even for the difficult degradation of azo dyes, is reported herein. The dye removal process involves adsorption of the dye from water by the mesoporous carbon–titania, followed by photodegradation on the separated dye‐loaded solid. Such adsorption–catalysis cycles can be carried out more than 80 times without discernible loss of photocatalytic activity or the anatase content of the composite. In each run, about 120 mg dye per g catalyst can be degraded. The mesoporous carbon–titania catalyst also exhibits a high capacity for converting methyl orange in aqueous solution under visible light. Characterization by XRD, TEM, and N2 sorption techniques has revealed that the self‐assembled composite catalyst has an ordered mesostructure, uniform mesopores (4.3 nm), a large pore volume (0.30 cm3 g?1), and a high surface area (348 m2 g?1). The pore walls are composed of amorphous carbon and anatase nanoparticles of size 4.2 nm, which are well dispersed and confined. X‐ray photoelectron spectroscopy (XPS), surface photovoltage spectroscopy (SPS), and UV/Vis absorption results indicate doping of carbon into the anatase lattice and a change in the bandgap of the semiconductor. The synergistic improvement in the composite catalyst can be attributed to the following features: (1) carbon doping of the anatase lattice modifies its bandgap and enhances its activity under visible light; (2) confinement within carbon pore walls prevents aggregation of tiny anatase nanoparticles, improving their activity and stability; (3) the mesopores provide a confined space for photocatalysis; and (4) the strong adsorption ability of porous carbon for organic substances ensures that large quantities can be processed and inhibits further diffusion of the adsorbed organic substances, thereby enhancing the mineralization on anatase.  相似文献   

9.
Magnetically active, thermally stable, and ordered mesoporous resin (MOMR-200) and carbon (MOMC-200) monoliths were prepared by one-pot hydrothermal synthesis from resol, copolymer surfactant, and iron cations at high-temperature (200 °C), followed by calcination at 360 °C and carbonization at 600 °C. X-ray diffraction results show that both MOMR-200 and MOMC-200 have ordered hexagonal mesoporous symmetry, and N2 isotherms indicate that these samples have uniform mesopores (3.71, 3.45 nm), high surface area (328, 621 m2/g) and large pore volume (0.31, 0.43 cm3/g). Transmission electron microscopy shows that iron nanoparticles, which are superparamagnetic in nature, are dispersed in the network. More importantly, the high temperature (200 °C) products exhibit much better stability than the samples synthesized at low temperature (100 °C). Interestingly, MOMC-200 has higher adsorption capacity for organic dyes when compared with commercial adsorbents (activated carbon and macroporous resin: XAD-4). Combining the advantages such as magnetically active, thermally stable networks, ordered and open mesopores, high surface area, large pore volume, adsorption of pollutants in water and desorption in ethanol solvent, MOMC-200 is potentially important for water treatments.  相似文献   

10.
Ruthenium (Ru) nanoparticles dispersed in mesoporous carbon microfibers were prepared using alumina microfibers as the templates via a chemical vapour deposition (CVD) route. Characterized data showed that Ru nanoparticles were embedded in the mesoporous carbon matrix. The samples were found to possess a specific surface area as high as 750 m(2) g(-1), pore sizes in the range of 3-5 nm, lengths in the range of 5-10 μm, and a width of about 0.5 μm. The Ru catalysts displayed a remarkably high catalytic activity and an excellent stability in the hydrogenation of D-glucose. The observed good catalyst performance is attributed to the carbon microfiber morphology, unblocked mesoporous structure, and the hydrogen spillover effect induced by the unique surface contact between the Ru nanoparticles and the carbon. In addition, the incorporation of nitrogen significantly improved the catalytic performance due to the enhanced hydrogen adsorption, better wettability, and modified electronic properties of the Ru.  相似文献   

11.
A solvent evaporation induced aggregating assembly (EIAA) method has been demonstrated for synthesis of highly ordered mesoporous silicas (OMS) in the acidic tetrahydrofuran (THF)/H(2)O mixture by using poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA) as the template and tetraethylorthosilicate (TEOS) as the silica precursor. During the continuous evaporation of THF (a good solvent for PEO-b-PMMA) from the reaction solution, the template molecules, together with silicate oligomers, were driven to form composite micelles in the homogeneous solution and further assemble into large particles with ordered mesostructure. The obtained ordered mesoporous silicas possess a unique crystal-like morphology with a face centered cubic (fcc) mesostructure, large pore size up to 37.0 nm, large window size (8.7 nm), high BET surface area (508 m(2)/g), and large pore volume (1.46 cm(3)/g). Because of the large accessible mesopores, uniform gold nanoparticles (ca. 4.0 nm) can be introduced into mesopores of the OMS materials using the in situ reduction method. The obtained Au/OMS materials were successfully applied to fast catalytic reduction of 4-nitrophenol in the presence of NaHB(4) as the reductant. The supported catalysts can be reused for catalytic reactions without significant decrease in catalysis performance even after 10 cycles.  相似文献   

12.
A novel route has been developed to fabricate ordered carbon mesoporous materials with well-dispersed, highly stable Pt nanoparticles of ca. 2-3 nm on the pore walls using platinum acetylacetonate as the co-feeding carbon and Pt precursor.  相似文献   

13.
A high-temperature reductive sulfuration method is demonstrated to synthesize highly ordered mesoporous metal sulfide crystallites by using mesoporous silica as hard templates. H2S gas is utilized as a sulfuration agent to in situ convert phosphotungstic acid H3PW12O40.6H2O to hexagonal WS2 crystallites in the silica nanochannels at 600 degrees C. Upon etching silica, mesoporous, layered WS2 nanocrystal arrays are produced with a yield as high as 96 wt %. XRD, nitrogen sorption, SEM, and TEM results reveal that the WS2 products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure (space group, p6mm) and rodlike morphology, analogous to the mother template. The S-W-S trilayers of the WS2 nanocrystals are partially oriented, parallel to the mesochannels of the SBA-15 template. This orientation is related with the reduction of the high-energy layer edges in layered metal dichalcogenides and the confinement in anisotropic nanochannels. The mesostructure can be 3-D cubic bicontinuous if KIT-6 (Iad) is used as a hard template. Mesoporous WS2 replicas have large surface areas (105-120 m2/g), pore volumes ( approximately 0.20 cm3/g), and narrow pore size distributions ( approximately 4.8 nm). By one-step nanocasting with the H3PMo12O40.6H2O (PMA) precursor into the mesochannels of SBA-15 or KIT-6 hard template, highly ordered mesoporous MoS2 layered crystallites with the 2-D hexagonal (p6mm) and 3-D bicontinuous cubic (Iad) structures can also be prepared via this high-temperature reductive sulfuration route. When the loading amount of PMA precursor is low, multiwalled MoS2 nanotubes with 5-7 nm in diameter can be obtained. The high-temperature reductive sulfuration method is a general strategy and can be extended to synthesize mesoporous CdS crystals and other metal sulfides.  相似文献   

14.
Synthesis of functionalized mesoporous carbon by an easy-accessed method is of great importance towards its practical applications.Herein,an evaporation induced self-assembly/carbonization(EISAC) method was developed and applied to the synthesis of sulfonic acid group functionalized mesoporous carbon(SMC).The final mesoporous carbon obtained by EISAC method possesses wormlike mesoporous structure,uniform pore size(3.6 nm),large surface area of 735 m2/g,graphitic pore walls and rich sulfonic acid group.Moreover,the resultant mesoporous carbon achieves a superior electrochemical capacitive performances(216 F/g)to phenolic resin derived mesoporous carbon(OMC,152 F/g)and commercial activated carbon(AC,119 F/g).  相似文献   

15.
采用原位限域生长策略制备了一系列有序介孔碳负载的超小MoO3纳米颗粒复合物(OMC-US-MoO3). 其中, 有序介孔碳被用作基质来原位限域MoO3纳米晶的生长. 依此方法制备的MoO3纳米晶具有超小的晶粒尺寸(<5 nm), 并在介孔碳骨架内具有良好的分散度. 制得的OMC-US-MoO3复合物具有可调的比表面积(428~796 m2/g)、 孔容(0.27~0.62 cm3/g)、 MoO3质量分数(4%~27%)和孔径(4.6~5.7 nm). 当MoO3纳米晶的质量分数为7%时, 所得样品OMC-US-MoO3-7具有最大的孔径、 最小的孔壁厚度和最规整的介观结构. 该样品作为催化剂时, 表现出优异的环辛烯选择性氧化性能.  相似文献   

16.
Highly ordered mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles has been successfully synthesized. By oxidative treatment using (NH(4))(2)S(2)O(8) and H(2)SO(4) mixed solution, numerous hydrophilic groups were created in the mesopores without destroying the ordered mesostructure of CMK-3. Through the in situ reduction in Fe(3+), magnetic nanoparticles were successfully introduced into the mesopores, resulting in the multifunctional mesoporous carbon Fe-CMK-3. The obtained hybrid carbon material possesses ordered mesostructure, high Brunauer-Emmett-Teller (BET) surface area up to 1013 m(2)/g, large pore volume of about 1.16 cm(3)/g, carboxylic surface, and excellent magnetic property. When used as an adsorbent, Fe-CMK-3 exhibits excellent performances for removing toxic organic compounds from waster-water, with a high adsorption capacity, an extremely rapid adsorption rate, and an easy magnetically separable process. In the case of requiring emergency removal of large amount of organic pollutants in aqueous, the hybrid carbon adsorbent would be an ideal choice.  相似文献   

17.
We present an in situ reduction method to synthesize a novel structured MnO(2)/mesoporous carbon (MnC) composite. MnO(2) nanoparticles have been synthesized and embedded into the mesoporous carbon wall of CMK-3 materials by the redox reaction between permanganate ions and carbons. Thermogravimetric analysis (TG), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), nitrogen sorption, transmission electron microscopy (TEM), and cyclic voltammetry were employed to characterize these composite materials. The results show that different MnO(2) contents could be introduced into the pores of CMK-3 treated with different concentrations of potassium permanganate aqueous solution, while retaining the ordered mesostructure and larger surface area. Increasing the MnO(2) content did not result in a decrease in pore size from the data of nitrogen sorption isotherms, indicating that MnO(2) nanoparticles are embedded in the pore wall, as evidenced by TEM observation. We obtained a large specific capacitance over 200 F/g for the MnC composite and 600 F/g for the MnO(2), and these materials have high electrochemical stability and high reversibility.  相似文献   

18.
The CO2 sequestration is one of the most promising solutions to tackle global warming. In this study, spherical mesoporous silica particles (MPS-S) and rod-shaped mesoporous silica particles (MPS-R) loaded with Cu nanoparticles were selectively prepared and employed for CO2 adsorption. For the first time uniform Cu nanoparticles were incorporated into the rod-shaped mesoporous silica particles by post-synthesis modification using both N-[3-(trimethoxysilyl)propyl]ethylenediamine (PEDA) and ethylenediamine (EDA) as coupling agents. The physiochemical properties of the mesoporous and copper grifted silica composites were investigated by CHN elemental analysis, FTIR spectroscopy, thermogravimetric analysis, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), surface area analysis, scanning, transmission electron microscopy and gas analysis system (GSD 320, TERMO). The mesoporous silica shows highly ordered mesoporous structures, with the rod-shaped particles having a higher surface area than the spherical ones. Copper nanoparticles with an average diameter of 6.0 nm were uniformly incorporated into the MPS-S and MPS-R. Moreover, Cu-loaded mesoporous silica exhibits up to 40% higher CO2 adsorption capacity than the bare MPS. The MPS-R modified with Cu nanoparticles showed a maximum CO2 adsorption capacity of 0.62 mmol/g and the humidity showed a slight negative effect on CO2 uptake process. The enhancement of CO2 adsorption onto transition metal/mesoporous substrates provides basis for imminent CO2 sequestration.  相似文献   

19.
以有序的中孔炭材料CMK-3为模板,以硝酸铈为前体,利用纳米铸型法合成了具有规则结构的中孔氧化铈,考察了模板脱除温度对中孔氧化铈微结构的影响.热重、元素分析、X射线衍射、透射电镜和氮气物理吸附结果表明,炭模板的脱除温度可低至350℃,所得氧化铈具有二维六方规则结构,比表面积高达167 m~2/g,孔径分布集中在3~5nm.采用胶体沉积法将2-5nm的金溶胶粒子沉积到所得氧化铈表面制得了Au/CeO_2催化剂,考察了Au/CeO_2在CO氧化反应中的活性.结果表明,该催化剂的活性较常规氧化铈制备的金催化利有明显提高,这可能与载体的规则结构有关.  相似文献   

20.
Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号