首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Straight-through microchannel (MC) emulsification is a novel technique for formulating monodisperse emulsions using an array of micrometer-sized channels vertical to the surface of a silicon plate (a straight-through MC). We studied the effects of the type and physical properties of the dispersed oil phase and of the surfactant concentration on droplet formation from a straight-through MC by experiments and computational fluid dynamics (CFD) simulations. Monodisperse oil-in-water emulsions with coefficients of variation below 4% were formulated from an oblong straight-through MC using silicone oils, tetradecane, medium-chain triglyceride, soybean oil, and liquid paraffin as the oil phase. At oil viscosities (eta(d)) lower than a threshold value of 100 mPa s, the values of the resultant droplet diameter (d(ex)) gradually decreased with increasing eta(d), whereas they were not affected by the surfactant concentration. Conversely, at eta(d) higher than the threshold value, the d(ex) values significantly increased with increasing eta(d), and they were affected by the surfactant concentration. An analysis on the basis of droplet formation time and interfacial tension clarified that the trends in d(ex) at eta(d) above the threshold value would be caused by the significant decrease in the dynamic interfacial tension during droplet formation. We thus discovered that the dynamic interfacial tension is also a parameter affecting the d(ex) along with eta(d) in straight-through MC emulsification. CFD simulations using a three-dimensional (3D) model including a straight-through MC confirmed successful formation of micrometer-sized droplets for the above-mentioned oils. The experimental and CFD results for the resultant droplet size were compared using the dimensionless droplet diameter (d, droplet diameter/channel equivalent diameter). The d(CFD) values agreed well with the d(ex) values at eta(d) below the threshold value of 100 mPa s for all the experiment systems and at eta(d) above the threshold value for the experiment systems that did not contain a surfactant.  相似文献   

2.
We have proposed a novel microchannel (MC) structure for formulating monodisperse emulsions. The emulsification device is a silicon array of microfabricated, asymmetric through-holes with a slit and a circular channel (an asymmetric straight-through MC). The asymmetric through-holes of a uniform size stably yielded monodisperse emulsions with average droplet diameters of 35-41 mum and coefficients of variation of less than 2% by forcing the to-be-dispersed phase into the continuous phase via the through-holes. Their asymmetry enabled the stable formation of monodisperse emulsion droplets by spontaneous transformation, even using a to-be-dispersed phase with a very low viscosity below 1 mPa s. Additionally, the asymmetric straight-through MC with a high-density through-hole layout has the potential for high-throughput formulation of monodisperse emulsions.  相似文献   

3.
We recently proposed a novel technique for preparing monodisperse emulsions using an array of microfabricated through-holes with an oblong section; we called this array a straight-through microchannel (MC). This paper reports how the slot aspect ratio of the straight-through MC affects droplet formation characteristics. Straight-through MCs with different slot aspect ratios and equivalent diameters of about 20 microm were used. Experimental observation showed that slot aspect ratios exceeding a threshold of approximately 3 were needed to successfully prepare monodisperse emulsions with coefficients of variation below 2%.  相似文献   

4.
Droplet formation in a wide-type microfluidic T-junction was studied using the computational fluid dynamics (CFD) method. Two distinct regimes of droplet formation were confirmed: dripping and jetting; and, at both regimes, droplet size decreases with an increase in capillary number. CFD simulation demonstrated that droplet formation in the T-junction can be divided into three steps: droplet emergence and growing up; separation with the disperse phase; and detachment from the channel wall. The wettability of the channel wall significantly affects the process of droplet detachment from the channel wall; also, the simulation clearly showed that droplets can be formed only when the continuous phase fluid preferentially wets the channel wall, that is, its contact angle on the wall is smaller than 90°. Finally, the CFD study verified that the disperse phase flow rate can significantly affect the droplet size as well as the mechanism of droplet formation.  相似文献   

5.
Strategic application of external electrostatic field on a pressure‐driven two‐phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid‐dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure‐driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure‐driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) “oil‐in‐water” microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange.  相似文献   

6.
The purpose of this article is to investigate the effects of channel sizes on the traffic of S/W compound droplets through a vertical channel. Compared with the horizontal channel, a vertical channel can effectively inhabit the contact of compound droplets with the channel wall, thus improving the survival rate. It is also found that the effects of tube length on droplet traffic are always dependent on the oil phase flow rate. In a short tube (L?=?2.0?cm), the survival rate increases as the oil phase flow rate increases. This may be due to significant prevention of coalescence among S/W compound droplets under a high oil phase flow rate. However, in a long tube (L?=?7.5?cm), the survival rate decreases with increasing oil phase flow rate, because disturbance of a water droplet can peel off the water phase coated on the surface of the solid particles. During the traffic process, the distance between water droplets and S/W compound droplets decreases linearly with time because of the larger diameter of the compound droplets. These study results can provide a useful guide for the preparation of high-throughput S/W compound droplets in a controllable and reproducible manner.  相似文献   

7.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

8.
Wave-plate separators are widely used to remove fine liquid droplet entrained in gas flow based on the inertia force difference of gas and liquid phase. The CFD method is adopted to simulate the separating process of wave-plate separator, the models and parameters used in the simulation were verified through comparing with the experimental data. It is validated that including the droplet coalescence and breakup model, which take place during the separating process, can depict the separating process better. The results indicate that the separation efficiency of wave-plate separator presents two peaks with the increasing of the separating velocity, the first peak is caused by gravity and the second peak is formed for the inertia separation, whereas with the increasing of the droplet diameter, the two peaks are no longer distinct. In addition, the separation efficiency is changed little with droplet diameter variation if the wave-plate separator is worked on the corresponding velocities of the two peaks, and changed a lot at other velocity. Researching results about droplet breakup also showed that only large diameter droplet will break up at lower flow velocity, and the droplet breakup diameter became smaller and smaller with the increasing of the flowing velocity.  相似文献   

9.
Emulsion droplet formation was investigated in terrace-based microchannel systems that generate droplets through spontaneous Laplace pressure driven snap-off. The droplet formation mechanism was investigated through high-speed imaging and computational fluid dynamics (CFD) simulation, and we found good agreement in the overall shape of the phases during droplet formation. An analytical model was derived from the insights that were gained from the CFD simulations, which describes the droplet diameter as a function of applied pressure. The analytical model covers the influence of both process parameters and geometry of the terrace well and can be used for fast optimization and evaluation studies.  相似文献   

10.
Ahn B  Lee K  Lee H  Panchapakesan R  Oh KW 《Lab on a chip》2011,11(23):3956-3962
We present a simple method of water-in-oil droplet synchronization in a railroad-like channel network. The network consisted of a top channel, a bottom channel, and ladder-like channels interconnected between the two main channels. The presence of the pressure difference between the top and bottom channels resulted in the crossflow of carrier oil through the ladder network until the pressure in each channel was balanced automatically. The proposed model and method proved the feasibility of the parallel synchronization of two trains of droplets with up to 95% synchronization efficiency. Physical parameters that could improve the efficiency were investigated with the systematic variation of the droplet length and droplet generation frequency by controlling the flow rate in each channel. Under a subtle difference in the generation frequency, an unmatched droplet sandwiched between two matched droplets in the ladder network was switched and synchronized in turn. For perfect one-to-one droplet synchronization, the droplet length and the droplet generation frequency needed to be the same for both the top and bottom channels. In addition, one-to-multiple droplet synchronization was demonstrated by matching the product of the droplet length and the droplet generation frequency for both the top and bottom channels. The proposed method provides a simple unit operation for parallel synchronization of the trains of droplets that can be easily integrated with the conventional continuous-flow droplet-based microfluidic platform.  相似文献   

11.
This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.  相似文献   

12.
A new rotating membrane emulsification system using a stainless steel membrane with 100 microm laser drilled pores was used to produce oil/water emulsions consisting of 2 wt% Tween 20 as emulsifier, paraffin wax as dispersed oil phase and 0.01-0.25 wt% Carbomer (Carbopol ETD 2050) as stabilizer. The membrane tube, 1 cm in diameter, was rotated inside a stationary glass cylinder, diameter of 3 cm, at a constant speed in the range 50-1500 rpm. The oil phase was introduced inside the membrane tube and permeated through the porous wall moving radially into the continuous phase in the form of individual droplets. Increasing the membrane rotational speed increased the wall shear stress which resulted in a smaller average droplet diameter being produced. For a constant rotational speed, the average droplet diameter increased as the stabilizer content in the continuous phase was lowered. The optimal conditions for producing uniform emulsion droplets were a Carbomer content of 0.1-0.25 wt% and a membrane rotational speed of 350 rpm, under which the average droplet diameter was 105-107 microm and very narrow coefficients of variation of 4.8-4.9%. A model describing the operation is presented and it is concluded that the methodology holds potential as a manufacturing protocol for both coarse and fine droplets and capsules.  相似文献   

13.
Xu JH  Luo GS  Li SW  Chen GG 《Lab on a chip》2006,6(1):131-136
Perpendicular flow is used to induce oil droplet breakup by using a capillary as water phase flow channel. It is a new route to produce monodisperse emulsions. The wetting properties of the fluids on the walls are exceedingly important parameters. Depending on the oil and water flow rates, different spatial distributions of the two phases as laminar, plugs, cobbles and drops, are obtained. The effects of two-phase flow rates on plugs and drop size are studied, and the different droplet formation mechanisms of plug flow and drop flow are discussed. Two quantitative equations utilized to predict the droplet size are developed.  相似文献   

14.
The behaviour of droplets entering a microfluidic chamber designed to house microelectrode detectors for real time analysis of clinical microdialysate is described. We have designed an analysis chamber to collect the droplets produced by multiphase flows of oil and artificial cerebral spinal fluid. The coalescence chamber creates a constant aqueous environment ideal for the placement of microelectrodes avoiding the contamination of the microelectrode surface by oil. A stream of alternating light and dark coloured droplets were filmed as they passed through the chamber using a high speed camera. Image analysis of these videos shows the colour change evolution at each point along the chamber length. The flow in the chamber was simulated using the general solution for Poiseuille flow in a rectangular chamber. It is shown that on the centre line the velocity profile is very close to parabolic, and an expression is presented for the ratio between this centre line velocity and the mean flow velocity as a function of channel aspect ratio. If this aspect ratio of width/height is 2, the ratio of flow velocities closely matches that of Poiseuille flow in a circular tube, with implications for connections between microfluidic channels and connection tubing. The droplets are well mixed as the surface tension at the interface with the oil dominates the viscous forces. However once the droplet coalesces with the solution held in the chamber, the no-slip condition at the walls allows Poiseuille flow to take over. The meniscus at the back of the droplet continues to mix the droplet and acts as a piston until the meniscus stops moving. We have found that the no-slip conditions at the walls of the chamber, create a banding effect which records the history of previous drops. The optimal position for sensors is to be placed at the plane of droplet coalescence ideally at the centre of the channel, where there is an abrupt concentration change leading to a response time ?16 ms, the compressed frame rate of the video. Further away from this point the response time and sensitivity decrease due to convective dispersion.  相似文献   

15.
Lai D  Frampton JP  Sriram H  Takayama S 《Lab on a chip》2011,11(20):3551-3554
Exposure of a negative photoresist-coated glass slide with diffused light from the backside through a mask with disconnected features provides multi-level rounded channels with narrow orifices in one exposure. Using these structures, we construct microfluidic systems capable of creating aqueous two-phase system droplets where one aqueous phase forms droplets and the other aqueous phase forms the surrounding matrix. Unlike water-in-oil droplet systems, aqueous two-phase systems can have very low interfacial tensions that prevent spontaneous droplet formation. The multi-level channels fabricated by backside lithography satisfy two conflicting needs: (i) the requirement to have narrowed channels for efficient valve closure by channel deformation and (ii) the need to have wide channels to reduce the flow velocity, thus reducing the capillary number and enhancing droplet formation.  相似文献   

16.
Microchannel (MC) emulsification is a novel technique for preparing monodispersed emulsions. This study demonstrates preparing water-in-oil-in-water (W/O/W) emulsions using MC emulsification. The W/O/W emulsions were prepared by a two-step emulsification process employing MC emulsification as the second step. We investigated the behavior of internal water droplets penetrating the MCs. Using decane, ethyl oleate, and medium-chain triglyceride (MCT) as oil phases, we observed successful MC emulsification and prepared monodispersed oil droplets that contained small water droplets. MC emulsification was possible using triolein as the oil phase, but polydispersed oil droplets were formed from some of the channels. No leakage of the internal water phase was observed during the MC emulsification process. The internal water droplets penetrated the MC without disruption, even though the internal water droplets were larger than the resulting W/O/W emulsion droplets. The W/O/W emulsion entrapment yield was measured fluorometrically and found to be 91%. The mild action of droplet formation based on spontaneous transformation led to a high entrapment yield during MC emulsification.  相似文献   

17.
The water droplets in the process of electrostatic coalescence are important when studying electrohydrodynamics. In the present study, the electric field and flow field are coupled through the phase field method based on the Cahn–Hilliard formulation. A numerical simulation model of single droplet deformation under the coupling field was established. It simulated the deformation behavior of the movement of a droplet in the continuous phase and took the impact of droplet deformation into consideration which is affected by two-phase flow velocity, electric field strength, the droplet diameter, and the interfacial tension. The results indicated that under the single action of the flow field, when the flow velocity was lower, the droplet diameter was greater as was the droplet deformation degree. When the flow velocity was increased, the droplet deformation degree of a small-diameter droplet was at its maximum size, the large-diameter droplet had a smaller deformation degree, and the middle-diameter droplet was at a minimum deformation degree. When the flow velocity was further increased, the droplet diameter was smaller, and the droplet deformation degree was greater. Under the coupled effect of the electric field and flow field, the two-phase flow velocity and the electric field strength were greater, and the degree of droplet deformation was greater. While the droplet diameter and interfacial tension were smaller, the degree of droplet deformation was greater. Droplet deformation degree increased along with the two-phase flow velocity. The research results provided a theoretical basis for gas–liquid separation with electrostatic coalescence technology.  相似文献   

18.
Photocyanation of pyrene (PyH) across an oil/water interface was explored by using two types of polymer microchannel chip. The chips (channel depth of 20 microm and width of 100 microm) were fabricated on the basis of photolithography and an imprinting method, with micromachined silicon templates being used for imprinting. As a typical example of the photoreaction, an aqueous NaCN solution and a propylene carbonate solution of PyH and 1,4-dicyanobenzene were brought separately into a Y-structured microchannel chip with the same flow velocity by pressure driven flow. Light irradiation onto the whole of the channel chip by a high-pressure Hg lamp resulted in formation of 1-cyanopyrene (PyCN), as confirmed by GC-MS analysis of the oil phase. The results demonstrated that the interfacial photochemical reaction of PyH proceeded successfully along the water/oil solution flow in the microchannel. Under optimum conditions by using a three-layer channel chip, absolute PyCN yields as high as 73% were attained with a reaction time of 210 s.  相似文献   

19.
Self-cleaning of surfaces becomes challenging for energy harvesting devices because of the requirements of high optical transmittance of device surfaces. Surface texturing towards hydrophobizing can improve the self-cleaning ability of surfaces, yet lowers the optical transmittance. Introducing optical matching fluid, such as silicon oil, over the hydrophobized surface improves the optical transmittance. However, self-cleaning ability, such as dust mitigation, of the oil-impregnated hydrophobic surfaces needs to be investigated. Hence, solution crystallization of the polycarbonate surface towards creating hydrophobic texture is considered and silicon oil impregnation of the crystallized surface is explored for improved optical transmittance and self-cleaning ability. The condition for silicon oil spreading over the solution treated surface is assessed and silicon oil and water infusions on the dust particles are evaluated. The movement of the water droplet over the silicon oil-impregnated sample is examined utilizing the high-speed facility and the tracker program. The effect of oil film thickness and the tilting angle of the surface on the sliding droplet velocity is estimated for two droplet volumes. The mechanism for the dust particle mitigation from the oil film surface by the sliding water droplet is analyzed. The findings reveal that silicon oil impregnation of the crystallized sample surface improves the optical transmittance significantly. The sliding velocity of the water droplet over the thick film (~700 µm) remains higher than that of the small thickness oil film (~50 µm), which is attributed to the large interfacial resistance created between the moving droplet and the oil on the crystallized surface. The environmental dust particles can be mitigated from the oil film surface by the sliding water droplet. The droplet fluid infusion over the dust particle enables to reorient the particle inside the droplet fluid. As the dust particle settles at the trailing edge of the droplet, the sliding velocity decays on the oil-impregnated sample.  相似文献   

20.
This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resistance to flow of the continuous (carrier) fluid in the thin films that separate the droplet from the walls of the microchannel when the droplet fills almost the entire cross-section of the channel. A simple scaling relation, based on this assertion, predicts the size of droplets and bubbles produced in the T-junctions over a range of rates of flow of the two immiscible phases, the viscosity of the continuous phase, the interfacial tension, and the geometrical dimensions of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号