首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop the eigenfunction method for the Dirac operator in a background magnetic field in the (2+1)-dimensional quantum electrodynamics (QED2+1). In the eigenfunction repressentation, we find the exact solutions and the Green's functions of the Dirac equation in a strong constant homogeneous magnetic field in 2+1 dimensions. In the one-loop QED2+1 approximation, we derive the effective Lagrangian, the density of vacuum fermions induced by the field, and the electron mass operator in a homogeneous background magnetic field. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 121, No. 3, pp. 412–423, December, 1999.  相似文献   

2.
The creation of charged fermion pairs by a strong external Coulomb field in a space with two dimensions is investigated. Exact solutions to the Dirac equation are found for the Coulomb external field in 2+1 dimensions. The equation for determining the critical charge is obtained and is numerically solved for a simplified model. The critical charge for 2+1 dimensions is much less than the critical charge for the similar model with 3+1 dimensions. The influence of the vacuum polarization on the critical charge is studied in the one-loop approximation to the (2+1)-dimensional quantum electrodynamics. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 116, No. 2, pp. 277–287, August, 1998.  相似文献   

3.
The creation of electron-positron pairs from a vacuum by an external Coulomb field is examined within (2+1)-dimensional quantum electrodynamics. If the electromagnetic coupling constant exceeds 0.62 (Z= 85), then in a simple model with a finite-size nucleus, the lower electron level crosses the boundary of the negative-energy continuum (i.e., Dirac sea), and a hole (i.e., positively charged fermion) appears in the negative-energy continuum. An equation is obtained that describes the levels of the ground and excited electron states in a strong Coulomb field of the nucleus. The critical nucleus charge is found for a few lowest electron states. The critical charge in 2+1 dimensions is significantly smaller than in 3+1 dimensions. The problem is reduced to the case of a bounded Coulomb field in 1+1 dimensions without a magnetic field. The interaction of a fermion and an external scalar field in 2+1 and 1+1 dimensions is investigated. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol 122, No. 3, pp. 372–384, March, 2000  相似文献   

4.
We find exact solutions of the Dirac equation and the fermion energy spectrum in the Coulomb (vector and scalar) potential and Aharonov-Bohm potential in 2+1 dimensions taking the particle spin into account. We describe the fermion spin using the two-component Dirac equation with the additional (spin) parameter introduced by Hagen. We consider the effect of creation of fermion pairs from the vacuum by a strong Coulomb field in the Aharonov-Bohm potential in 2+1 dimensions. We obtain transcendental equations implicitly determining the electron energy spectrum near the boundary of the lower energy continuum and the critical charge. We numerically solve the equation for the critical charge. We show that for relatively weak magnetic flows, the critical charge decreases (compared with the case with no magnetic field) if the energy of interaction of the electron spin magnetic moment with the magnetic field is negative and increases if this energy is positive. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 158, No. 2, pp. 250–262, February, 2009.  相似文献   

5.
We obtain exact solutions of the Dirac equation in 2+1 dimensions and the electron energy spectrum in the superposition of the Aharonov-Bohm and Coulomb potentials, which are used to study the Aharonov-Bohm effect for states with continuous and discrete energy spectra. We represent the total scattering amplitude as the sum of amplitudes of scattering by the Aharonov-Bohm and Coulomb potentials. We show that the gauge-invariant phase of the wave function or the energy of the electron bound state can be observed. We obtain a formula for the scattering cross section of spin-polarized electrons scattered by the Aharonov-Bohm potential. We discuss the problem of the appearance of a bound state if the interaction between the electron spin and the magnetic field is taken into account in the form of the two-dimensional Dirac delta function. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 149, No. 3, pp. 502–517, December, 2006. An erratum to this article is available at .  相似文献   

6.
We find all self-adjoint Dirac Hamiltonians in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions with the fermion spin taken into account. We obtain implicit equations for the spectra and construct eigenfunctions for all self-adjoint Dirac Hamiltonians in the indicated external fields. We find explicit solutions of the equations for the spectra in some cases.  相似文献   

7.
We show that in 2+1 dimensions, the Dirac equation for a neutral fermion possessing electric and magnetic dipole moments in an external electromagnetic field reduces to the Dirac equation for a charged fermion in a external field characterized by a certain 3-pseudo-vector potential. The effective charge of the neutral fermion is determined by its dipole moments. The effects of coupling electric and magnetic moments of the neutral fermion to the external electromagnetic field seem to be inseparable in physical experiments of any type. We find an exact solution of the Dirac equation for a massive neutral fermion with electric and magnetic dipole moments in a external plane-wave electromagnetic field. We derive expressions for the fermionic vacuum current induced by neutral fermions in the presence of external electromagnetic fields.  相似文献   

8.
The interaction of two charges moving in ℝ3 in a magnetic field B can be formulated as a Hamiltonian system with six degrees of freedom. Assuming that the magnetic field is uniform and the interaction potential has rotation symmetry, we reduce this system to one with three degrees of freedom. For special values of the conserved quantities, choices of parameters or restriction to the coplanar case, we obtain systems with two degrees of freedom. Specialising to the case of Coulomb interaction, these reductions enable us to obtain many qualitative features of the dynamics. For charges of the same sign, the gyrohelices either “bounce-back”, “pass-through”, or exceptionally converge to coplanar solutions. For charges of opposite signs, we decompose the state space into “free” and “trapped” parts with transitions only when the particles are coplanar. A scattering map is defined for those trajectories that come from and go to infinite separation along the field direction. It determines the asymptotic parallel velocities, guiding centre field lines, magnetic moments and gyrophases for large positive time from those for large negative time. In regimes where gyrophase averaging is appropriate, the scattering map has a simple form, conserving the magnetic moments and parallel kinetic energies (in a frame moving along the field with the centre of mass) and rotating or translating the guiding centre field lines. When the gyrofrequencies are in low-order resonance, however, gyrophase averaging is not justified and transfer of perpendicular kinetic energy is shown to occur. In the extreme case of equal gyrofrequencies, an additional integral helps us to analyse further and prove that there is typically also transfer between perpendicular and parallel kinetic energy.   相似文献   

9.
The Green's function of the Dirac equation with an external stationary homogeneous magnetic field in the (2+1)-dimensional quantum electrodynamics (QED 2+1) with a nonzero fermion density is constructed. An expression for the polarization operator in an external stationary homogenous magnetic field with a nonzero chemical potential is derived in the one-loopQED 2+1 approximation. The contribution of the induced Chern—Simons term to the polarization operator and the effective Lagrangian for the fermion density corresponding to the occupation of n relativistic Landau levels in an external magnetic field are calculated. An expression of the induced Chern—Simons term in a magnetic field for the case of a finite temperature and a nonzero chemical potential is obtained. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 125, No. 1, pp. 132–151, October, 2000.  相似文献   

10.
Synchro-curvature radiation put forward by Zhang and Cheng is a new and universal radiation mechanism, it describes in detail the radiation properties of a relativistic charged particle moving in a curved magnetic field. This new radiation generalizes all the classical results of ordinary synchrotron and curvature radiations and reveals inherent linkage and unification between them. Additionly, a general, simple and unitary formula is provided for discussing the radiation problem in research of pulsars. However, the magnitude of the magnetic field of a pulsar is so strong (107-109T) that the quantum effects cannot be neglected. The GFWW method developed recently by Lieu and Axford is applied to generalize the results of Zhang and Cheng. The quantum limited synchro-curvature radiation spectra for spinless K-G particles and spin-1/2 Dirac particles are presented, respectively. Their radiation properties are also discussed. Project supported by the National Natural Science Foundation of China and the National “Climbing Project”.  相似文献   

11.
The Zubarev nonequilibrium statistical operator is used to describe the generalized hydrodynamic state of a magnetic fluid in an external magnetic field. The magnetic fluid is modeled with “liquid-state” and “magnetic” subsystems described using the classical and quantum statistics methods respectively. Equations of the generalized statistical hydrodynamics for a magnetic fluid in a nonhomogeneous external magnetic field with the Heisenberg spin interaction are derived for “liquid-state” and “magnetic” subsystems characterized by different nonequilibrium temperatures. These equations can be used to describe both the weakly and strongly nonequilibrium states. Some limiting cases are analyzed in which the variables of one of the subsystems can be formally neglected. Translated from Teoreticheskaya i Matematicheskaya Fizika. Vol. 115, No. 1, pp. 132–153, April, 1998.  相似文献   

12.
We study the manifold of complex Bloch-Floquet eigenfunctions for the zero level of a two-dimensional nonrelativistic Pauli operator describing the propagation of a charged particle in a periodic magnetic field with zero flux through the elementary cell and a zero electric field. We study this manifold in full detail for a wide class of algebraic-geometric operators. In the nonzero flux case, the Pauli operator ground state was found by Aharonov and Casher for fields rapidly decreasing at infinity and by Dubrovin and Novikov for periodic fields. Algebraic-geometric operators were not previously known for fields with nonzero flux because the complex continuation of “magnetic” Bloch-Floquet eigenfunctions behaves wildly at infinity. We construct several nonsingular algebraic-geometric periodic fields (with zero flux through the elementary cell) corresponding to complex Riemann surfaces of genus zero. For higher genera, we construct periodic operators with interesting magnetic fields and with the Aharonov-Bohm phenomenon. Algebraic-geometric solutions of genus zero also generate soliton-like nonsingular magnetic fields whose flux through a disc of radius R is proportional to R (and diverges slowly as R → ∞). In this case, we find the most interesting ground states in the Hilbert space L 2 (ℝ 2 ).  相似文献   

13.
In relativistic quantum mechanics wave functions of particles satisfy field equations that have initial data on a space-like hypersurface. We propose a dual field theory of “wavicles” that have their initial data on a time-like worldline. Propagation of such fields is superluminal, even though the Hilbert space of the solutions carries a unitary representation of the Poincaré group of mass zero. We call the objects described by these field equations “Kairons”. The paper builds the field equations in a general relativistic framework, allowing for a torsion. Kairon fields are section of a vector bundle over space-time. The bundle has infinite-dimensional fibres.  相似文献   

14.
Abstract Using the decomposition of an antisymmetric 2-tensor as a sum of two orthogonal bivectors, the various canonical forms of the electromagnetic tensor field are analyzed, recovering known results. However, introducing 1+3 spacetime splitting techniques, the canonical forms are associated to special frames and observers and this helps to clarify the role played by “measurable” quantities (electric and magnetic fields, Poynting vector) in the classification problem itself. Keywords: Electromagnetic field, Canonical form Mathematics Subject Classification (2000): 83A05, 78A25  相似文献   

15.
We establish the exact low-energy asymptotics of the integrated density of states (Lifschitz tail) in a homogeneous magnetic field and Poissonian impurities with a repulsive single-site potential of Gaussian decay. It has been known that the Gaussian potential tail discriminates between the so-called “classical” and “quantum” regimes, and precise asymptotics are known in these cases. For the borderline case, the coexistence of the classical and quantum regimes was conjectured. Here we settle this last remaining open case to complete the full picture of the magnetic Lifschitz tails. Received: 28 March 2000 / Revised version: 22 December 2000 / Published online: 24 July 2001  相似文献   

16.
Based on the requirement that the gauge invariance principle for the Poincaré-Weyl group be satisfied for the space-time manifold, we construct a model of space-time with the geometric structure of a Weyl-Cartan space. We show that three types of fields must then be introduced as the gauge (“compensating”) fields: Lorentz, translational, and dilatational. Tetrad coefficients then become functions of these gauge fields. We propose a geometric interpretation of the Dirac scalar field. We obtain general equations for the gauge fields, whose sources can be the energy-momentum tensor, the total momentum, and the total dilatation current of an external field. We consider the example of a direct coupling of the gauge field to the orbital momentum of the spinor field. We propose a gravitational field Lagrangian with gauge-invariant transformations of the Poincaré-Weyl group. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 157, No. 1, pp. 64–78, October, 2008.  相似文献   

17.
We find exact solutions of the Dirac equation that describe fermion bound states in the Aharonov-Bohm potential in 2+1 dimensions with the particle spin taken into account. For this, we construct self-adjoint extensions of the Hamiltonian of the Dirac equation in the Aharonov-Bohm potential in 2+1 dimensions. The self-adjoint extensions depend on a single parameter. We select the range of this parameter in which quantum fermion states are bound. We demonstrate that the energy levels of particles and antiparticles intersect. Because solutions of the Dirac equation in the Aharonov-Bohm potential in 2+1 dimensions describe the behavior of relativistic fermions in the field of the cosmic string in 3+1 dimensions, our results can presumably be used to describe fermions in the cosmic string field.  相似文献   

18.
We carry out the spectral analysis of singular matrix valued perturbations of 3-dimensional Dirac operators with variable magnetic field of constant direction. Under suitable assumptions on the magnetic field and on the perturbations, we obtain a limiting absorption principle, we prove the absence of singular continuous spectrum in certain intervals and state properties of the point spectrum. Constant, periodic as well as diverging magnetic fields are covered, and Coulomb potentials up to the physical nuclear charge Z<137 are allowed. The importance of an internal-type operator (a 2-dimensional Dirac operator) is also revealed in our study. The proofs rely on commutator methods.  相似文献   

19.
We study the vacuum polarization of zero-mass charged fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions. For this, we construct the Green’s function of the two-dimensional Dirac equation in the considered field configuration and use it to find the density of the induced vacuum charge in so-called subcritical and supercritical regions. The Green’s function is represented in regular and singular (in the source) solutions of the Dirac radial equation for a charged fermion in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions and satisfies self-adjoint boundary conditions at the source. In the supercritical region, the Green’s function has a discontinuity related to the presence of singularities on the nonphysical sheet of the complex plane of “energy,” which are caused by the appearance of an infinite number of quasistationary states with negative energies. Ultimately, this situation represents the neutral vacuum instability. On the boundary of the supercritical region, the induced vacuum charge is independent of the self-adjoint extension. We hope that the obtained results will contribute to a better understanding of important problems in quantum electrodynamics and will also be applicable to the problem of screening the Coulomb impurity due to vacuum polarization in graphene with the effects associated with taking the electron spin into account.  相似文献   

20.
The thermodynamics of Dirac field is discussed in the backgrounds of 3 dimensional Banados-Teitelboim-Zanelli space time. The Dirac equation is solved under “quasi-periodic” boundary condition and the exact solution is obtained, from which the corresponding free energy and Fermionic entropy are calculated Project supported by the National Natural Science Foundation of China (Grant No. 9873013).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号