首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-temperature chlorination of poly(vinyl fluoride) (PVF) proceeds readily in CCl4 suspension. The rate of chlorination is high initially, but the reaction slows down considerably when the chlorine content of the polymer reaches 40–50%. At long reaction times, polymers containing 62% chlorine (1.88 chlorine atoms per monomer unit) can be obtained. As the degree of chlorination increases, the solubility of PVF in organic solvents increases. Polymer crystallinity and polymer softening point decrease with chlorination. Polymers containing 40% chlorine appear to be completely amorphous by x-ray analysis. In this respect, PVF differs from poly(vinyl chloride) (PVC), where chlorination increases the softening point, and it resembles polyethylene where both crystallinity and softening point decrease with chlorination. 19F NMR analysis of the polymers indicates that up to a degree of chlorination of 1 chlorine atom per monomer unit, 50% of the substitution occurs on the α-carbon of the PVF molecule. This result is very different from the predominant β-chlorination of PVC reported by several workers. The chemical selectivity observed in the chlorination of PVF is in quantitative agreement with the results of free-radical chlorination of organic compounds and can be rationalized by considering the size and the electronic properties of the fluorine atom. The results of 1H NMR analysis are also in support of a polymer structure where the chlorine atoms are distributed between α- and β-carbons. Based on a comparison of the 19F and 1H NMR data, the average composition of chlorinated PVF at the 1 chlorine atom per monomer unit level can be represented as: C200H200F100Cl100 = (CH2)63(CHF)50(CHCl)24(CClF)50-(CCl2)13.  相似文献   

2.
Haloalkynylation reactions provide an efficient method for the simultaneous introduction of a halogen atom and an acetylenic unit. For the first time, we report a gold(I)‐catalyzed haloalkynylation of aryl alkynes that delivers exclusively the cis addition product. This method enables the simple synthesis of conjugated and halogenated enynes in yields of up to 90 %. Notably, quantum chemical calculations reveal an exceptional interplay between the place of the attack at the chloroacetylene: No matter which C?C bond is formed, the same enyne product is always formed. This is only possible through rearrangement of the corresponding skeleton. Hereby, one reaction pathway proceeds via a chloronium ion with a subsequent aryl shift; in the second case the corresponding vinyl cation is stabilized by a 1,3‐chlorine shift. 13C‐labeling experiments confirmed that the reaction proceeds through both reaction pathways.  相似文献   

3.
Chlorination of π‐conjugated backbones is garnering great interest because of fine‐tuning electronic properties of conjugated materials for organic devices. Herein we report a synthesis of thiophene‐based diketopyrrolopyrrole (DPP) dimers and their chlorinated counterparts by introducing a chlorine atom in the outer thiophene ring to investigate the influence of the chlorination on charge transport. The backbone chlorination lowers both the HOMO and the LUMO of the dimers and leads to a blue‐shift of maximum absorption in compared to unsubstituted counterparts. X‐ray analysis reveals that the chlorine atom prompts the outer thiophene ring out of the planarity of the backbone with a relatively large torsional angle. The chlorinated dimers exhibit slipped one‐dimensional packing decorated with multiple intermolecular interactions, because of a combination of a negative inductive effect and a positive mesomeric effect of the halogen atom, which might facilitate charge transport within the oligomeric backbones. The mobility in the single‐crystal OFET devices of the chlorinated dimers is up to 1.5 cm2 V?1 s?1, which is two times higher than that of the non‐chlorinated DPP dimers. Our results indicate that the chlorine atom plays a key role in directing non‐covalent interactions to lock the slipped stacks, enabling electronic coupling between adjacent molecules for efficient charge transport. In addition, our results also demonstrate that these DPP dimers with straight n‐octyl chains exhibit higher mobilities than the dimers with branched 2‐ethylhexyl chains.  相似文献   

4.
Quantum chemical calculations at the MP2/aug‐cc‐pVTZ and CCSD(T)/aug‐cc‐pVTZ levels have been carried out for the title compounds. The electronic structures were analyzed with a variety of charge and energy partitioning methods. All molecules possess linear equilibrium structures with D∞h symmetry. The total bond dissociation energies (BDEs) of the strongly bonded halogen anions [XHX]? and [XAuX]? decrease from [FHF]? to [IHI]? and from [FAuF]? to [IAuI]?. The BDEs of the noble gas compounds [NgHNg]+ and [NgAuNg]+ become larger for the heavier atoms. The central hydrogen and gold atoms carry partial positive charges in the cations and even in the anions, except for [IAuI]?, in which case the gold atom has a small negative charge of ?0.03 e. The molecular electrostatic potentials reveal that the regions of the most positive or negative charges may not agree with the partial charges of the atoms, because the spatial distribution of the electronic charge needs to be considered. The bonding analysis with the QTAIM method suggests a significant covalent character for the hydrogen bonds to the noble gas atoms in [NgHNg]+ and to the halogen atoms in [XHX]?. The covalent character of the bonding in the gold systems [NgAuNg]+ and [XAuX]? is smaller than in the hydrogen compound. The energy decomposition analysis suggests that the lighter hydrogen systems possess dative bonds X?→H+←X? or Ng→H+←Ng while the heavier homologues exhibit electron sharing through two‐electron, three‐center bonds. Dative bonds X?→Au+←X? and Ng→Au+←Ng are also diagnosed for the lighter gold systems, but the heavier compounds possess electron‐shared bonds.  相似文献   

5.
Controlled chlorination of trifluoromethoxybenzene produced the mono-, di-, tri-, and tetrachloro derivatives. Two isomers were detected at each level of substitution. Exhaustive chlorination and bromination of 1,3- and 1,4-bis(trifluoromethoxy)-benzene yielded isomeric mixtures of only the disubstituted bis(trifluoromethoxy)benzenes. No hydrolysis of the -OCF3 group was detected in any halogenations. The configuration of all the products was determined by 1H and 19F nmr. A through-space hydrogen-fluorine coupling of 0.7 – 1.3Hz between the -OCF3 substituent and the ortho proton was observed in all the halogenated products. The polychlorinated derivatives all exhibited good thermal stability at 200°–250°.  相似文献   

6.
The recent discovery of the all‐boron fullerenes or borospherenes, D2d B40−/0, paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 ( 1 , C2v, 1A1) and Sr@B40 ( 3 , D2d, 1A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 ( 5 , Cs, 1A′) and Mg&B40 ( 7 , Cs, 1A′) favor exohedral borospherene geometries with a η7‐M atom face‐capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge‐transfer complexes (M2+B402−), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 ( 1 ) and Sr@B40 ( 3 ) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D2d B40 borospherene.  相似文献   

7.
The recent discovery of the all‐boron fullerenes or borospherenes, D2d B40?/0, paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 ( 1 , C2v, 1A1) and Sr@B40 ( 3 , D2d, 1A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 ( 5 , Cs, 1A′) and Mg&B40 ( 7 , Cs, 1A′) favor exohedral borospherene geometries with a η7‐M atom face‐capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge‐transfer complexes (M2+B402?), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 ( 1 ) and Sr@B40 ( 3 ) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D2d B40 borospherene.  相似文献   

8.
The bromo‐ and iodoaza‐closo‐dodecaboranes HNB11H10Hal (Hal = Br, I), MeNB11H9Br2, and MeNB11H8Br3 are formed from [NB11H11] and MeNB11H11, respectively, by electrophilic halogenation with elementary halogen in the presence of acidic catalysts. Hydrogen in para‐ or in para‐ and meta‐position with respect to the cluster‐N atom is substituted by halogen. With iodine chloride as halogenation agent, all the 11 boron bound H atoms of MeNB11H11 are substituted to give HNB11Cl5I6 with iodine in the para‐ and meta‐ and chlorine in the ortho‐positions, presumably via electrophilic (I) and nucleophilic substitution (Cl). The products are characterized by their NMR spectra, the product HNB11Cl5I6 also by crystal structure analysis.  相似文献   

9.
The electrostatic properties of halogen atoms are studied theoretically in relation to their ability of halogen bonding, which is an attractive intermolecular interaction of a covalently bonded halogen atom with a negatively charged atom of a neighboring molecule. The electric quadrupole (of electronic origin) with a positive zz component Θzz of a covalently bonded halogen atom, where the z axis is taken along the covalent bond involving the halogen atom, is mainly responsible for the attractive electrostatic interaction with a negatively charged atom. This positive Θzz is an intrinsic property of halogen atoms with the px2py2pz configuration of the valence electronic shell, as shown by ab initio molecular orbital calculations for isolated halogen atoms with this electronic configuration, and increases in the order of F < Cl < Br < I, in parallel with the known general sequence of the strength of halogen bonding. For halogen‐containing aromatic compounds, the substituent effects on the electrostatic properties are also studied. It is shown that the magnitude of Θzz and the electric field originating from it are rather insensitive to the substituent effect, whereas the electric field originating from atomic partial charges has a large substituent effect. The latter electric field tends to partially cancel the former. The extent of this partial cancellation is reduced in the order of Cl < Br < I and is also reducible by proper substitution on or within the six‐membered ring of halobenzene. Perspectives on the development of potential function parameters applicable to halogen‐bonding systems are also briefly discussed. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

10.
The kinetics of liquid phase chlorination of methane in a difluorodichloromethane medium has been studied in a temperature interval of 293–150 K. The value of activation energy found for the hydrogen abstraction stage by a chlorine atom (E1) equals 14.2 ± 2.5 kJ/mol, with the processes of chlorine atoms recombination and the cage effect being taken into account. The method of competitive reactions has been employed to assess the constants of reaction of chlorine atoms (k1) with ethane, propane, hexane, ethylene, allyl bromide, allyl chloride, ethyl chloride, and cyclohexane in nonpolar solvents, viz. difluorodichloromethane and 1,2-dibromotetrafluoroethane. The values (k1) obtained in the liquid phaseare two to four orders lower than those in the gas phase, while the activation energy is 2–6 kJ/mol higher.  相似文献   

11.
Two typical series of C60 embedded complexes (X@C60) (X = Li, Na, K, Rb, Cs; F, Cl, Br, I) have been chosen to study as prototypes, in which the Buckingham potential (exp-6-1) function was applied to calculating the interactions of the atom pairs. The potential parameters are obtained from related crystals by the simulations using molecular mechanics methods. To utilize the symmetry of the potential field in C60, the calculation is carried out along five typical radial directions. The computational results show that the interaction between the embedded atom and the C60 cage is not purely electrostatic. The repulsive energy, Erep, accounts for from 0.2% to 6.6% (for the alkali series), and from 1.5% to 58% (for the halogen series); the dispersive energy Edis accounts for from 1.2% to 6.5% (for the alkali series), and from 2.2% to 42% (for the halogen series); and the electrostatic energy, Ees, accounts for 99% to 87% (for the alkali series) and from 96% to 0% (for the halogen series) when the embedded atom is put at the center of the cage. Erep reaches up to 8% ∼ 35% (alkali), and 16% ∼ 704% (halogen); Edis up to 4% ∼ 16% (alkali) and 7% ∼ 26% (halogen); and Ees falls down to about 88% ∼ 49% (alkali), and 96% ∼ 0% (halogen), when the embedded atom deviates 1.8 A from the cage center. The total interactions, Einter, are all attractive for X (X = Li, Na, K, Rb, Cs; F. Cl, Br), but repulsive for the I atom. It is shown that the potential field in the C60 cage has nearly spherical symmetry in an area with a radius of 1.8 Å around the cage center. The same kinds of interactions for the atoms in the two individual series are compared, and some variation rules are obtained. For (Li@C60), the minimum energy equilibrium point deviates from the center by about 0.5 Å. © 1996 by John Wiley & Sons, Inc.  相似文献   

12.
The Voronoi-Dirichlet polyhedra (VDP) and the intersecting sphere method were used to analyze the coordination of Pb(II) and Pb(IV) atoms by halogen atoms in the crystal structures of 158 compounds. A decrease in the steric effect of the Pb(II) lone electron pair with a decrease in the electronegativity of the surrounding atoms was established. The influence of the nature of the central atom on the steric effect of the lone pair in the structure of the AX n z? complexes, where X is halogen or oxygen, A = Tl(I), Sn(II), Pb(II), As(III),Sb(III), Bi(III), S(IV), Se(IV), Te(IV), or Cl(V) was considered.  相似文献   

13.
Hong Wang  Lin Wu 《中国化学》2011,29(10):2063-2067
The structures and stabilities of cage Si20F20 and its endohedral complexes X2−@Si20F20 (X=O, S, Se) were determined at the B3LYP/6‐31G(d) levels of density functional theory (DFT). It is found that the adiabatic electron affinity (EAad) of host cage Si20F20 (Ih) is higher than that of isolated O atom (4.24 vs. 1.46 eV). This suggests the Si20F20 cage can selectively trap and stabilize the capsulated spherical anions. The calculations predict that X=S and Se are nearly located at the center of the cage, and O dramatically deviates from the center in C3v symmetry. Moreover, the corresponding X2−@Si20F20 complexes have more negative inclusion energies (ΔEinc) and thermodynamic parameters (ΔZ) than X2−@C20F20. The amount of charge that is being transferred from the encapsulated anions to the cage increases with the atomic radius, i.e., from O2− (ca. 45%), S2− (ca. 51%) to Se2− (ca. 59%), and such a novel model of cage may have practical uses as potential and electrical building units of nanoscale materials.  相似文献   

14.
The structure, electronic property, and infrared spectroscopy of endohedral metallofullerenes TM@C20 (TM = Ce and Gd) have been systematically investigated with the aid of the hybrid DFT‐B3LYP functional. It is found that in the endohedral metallofullerenes the average C? C bond lengths are obvious longer than those of empty cage. The frontier orbital analyses show that the endohedral metallofullerene Gd@C20 has the high‐thermodynamic stability. Natural population analysis also tells us that only in the Ce@C20, the Ce atom acts as an electron acceptor with the negative charges, and the 4f orbitals of Ce and Gd atoms have a significant contribution in the formation of chemical bonding. Additionally, the analyses of harmonic vibrational frequencies reveal that when the TM atoms are encapsulated into the C20 cage, the strongest absorption peaks are characterized by a mixture of TM?C bending and C? C stretching vibrations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
Aromatic polyamides were prepared from systematically halogenated terephthalic acids with hexamethylene diamine, piperazine, 4,4′-diaminodiphenylether and p-phenylene diamine by interfacial or low temperature solution polycondensation. The halogenated terephthalic acids used have mono-, di-, or tetra-substituted fluorine, chlorine, or bromine atoms on the benzene ring. The nonhalogenated terephthalic acid was also used for the comparison. The effects of halogen substitution on the benzene ring on the synthesis and some properties of polymers were examined. Reduced specific viscosity decreased in the order F > Cl > Br by halogen substitution. The incorporation of halogen substituents on the ring led to a decrease of crystallinity and fluoro-substituents hindered the crystallization more strongly. The melting point (Tm) decreased in the order F > Cl > Br by mono-substitution, and Br > Cl > F by di-and tetra-substitution. The change of Tm caused by the difference of the number of halogen substituents differed depending on the rigidity of polymer chains. The flame-retardancy estimated by thermogravimetry, self-ignition, and flash-ignition test increased with increasing halogen content of the polymers. Solubility increased remarkably by halogen substitution. The peak temperature of tan δ decreased by halogen substitution. Some discussion was made on these effects of halogen substitution.  相似文献   

16.
Treatment of copper(I) halides CuX (X = Cl, Br, I) with lithium 2‐(diphenylphosphanyl)anilide [Li(HL)] in THF led to the formation of hexanuclear copper(I) complexes [Cu6X2(HL)4] [X = Cl ( 1 ), Br ( 2 ), I ( 3 )]. In compounds 1 – 3 , the copper atoms are in a distorted octahedral arrangement and the amide ligands adopt a μ3‐κP,κ2N bridging mode. Additionally there are two μ2‐bridging halide ligands. Each of the [Cu6X2(HL)4] clusters comprises two copper atoms, which are surrounded by two amide nitrogen atoms in an almost linear coordination [Cu–N: 186.2(3)–188.0(3) pm] and four copper atoms, which are connected to an amide N atom, a P atom, and a halogen atom in a distorted trigonal planar fashion [Cu–N: 199.6(3)–202.3(3) pm)].  相似文献   

17.
Super‐ and hyperhalogens are a class of highly electronegative species whose electron affinities far exceed those of halogen atoms and are important to the chemical industry as oxidizing agents, biocatalysts, and building blocks of salts. Using the well‐known Wade–Mingos rule for describing the stability of closo‐boranes BnHn2? and state‐of‐the‐art theoretical methods, we show that a new class of super‐ and hyperhalogens, guided by this rule, can be formed by tailoring the size and composition of borane derivatives. Unlike conventional superhalogens, in which a central metal atom is surrounded by halogen atoms, the superhalogens formed according to the Wade–Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using B12H13 and its isoelectronic cluster CB11H12 as examples. We also show that while conventional superhalogens containing alkali atoms require at least two halogen atoms, a single borane‐like moiety is sufficient to give M(B12H12) clusters (M=Li, Na, K, Rb, Cs) superhalogen properties. In addition, hyperhalogens can be formed by using the above superhalogens as building blocks. Examples include M(B12H13)2 and M(CB11H12)2 (M=Li–Cs). This finding opens the door to an untapped source of superhalogens and weakly coordinating anions with potential applications.  相似文献   

18.
19.
《Tetrahedron letters》2019,60(23):1551-1555
An efficient chlorination and bromination of arenes mediated by in situ-formed PhI(X)OAlX2 (X = -Cl, -Br), which is proposed as a plausible halogenating species, is described. The proposed dual role displayed by AlX3, enables the Iodosylbenzene [(PhIO)n] depolymerization while also acting as the halogen source by transferring the chlorine or bromine atoms to the iodine(III) center. This process allowed the chlorination and bromination of different arenes and heteroarenes under mild and open flask conditions. To the best of our knowledge, this is the first report describing a dual role of aluminum salts applied to the direct C-H chlorination and bromination of arenes.  相似文献   

20.
In novel superatom chemistry, it is very attractive that all‐metal clusters can mimic the behaviors of nonmetal atoms and simple nonmetal molecules. Wizardly all‐metal halogen‐like superatom Al13 with 2P5 sub shell (corresponding to the 3p5 of chlorine) is the most typical example. In contrast, how to mimic the behaviors of magnetic transition‐metal atom using all‐nonmetal cluster is an intriguing challenge for superatom chemistry. In response to this based on human intuition, using quantum chemistry methods and extending jellium model from metal cluster to all‐nonmetal cluster, we have found out that all‐nonmetal octahedral B6 cluster with characteristic jellium electron configuration 1S21P62S21D8 in the triplet ground state can mimic the behaviors of transition‐metal Ni atom with electron configuration 3s23p64s23d8 in electronic configuration, physics and chemistry. Interestingly, the characteristic order of 1S1P2S1D for the B6 nonmetal cluster with short B‐B lengths is different from that of the traditional jellium model—1S1P1D2S for metal clusters with long M‐M lengths, which exhibits a novel size effect of nonmetal cluster on jellium orbital ordering. Based on the jellium electron configuration, the B6 with the spin moment value of 2μB is a new all‐nonmetal transition‐metal nickel‐like superatom exhibiting a new kind of all‐nonmetal magnetic superatom. Finding the application of the all‐nonmetal magnetic superatom, we encapsulate the magnetic superatom B6 inside fully hydrogenated fullerene forming a clathrate B6@C60H60 with the spin moment value of 2μB. As the C60H60 cage as a polymerization unit can conserve the spin moment of endohedral B6, the clathrate B6@C60H60 is a new all‐nonmetal magnetic superatom building block. Naturally, magnetic superatom structures of the B6 and B6@C60H60 may be metastable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号