首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
An ab initio interpolated potential energy surface (PES) for the F + CH4 reactive system has been constructed using the interpolation method of Collins and co-workers. The ab initio calculations have been performed using second-order M?ller-Plesset (MP2) perturbation theory to build the initial PES. Scaling all correlation (SAC) methodology has been employed to improve the ab initio calculations and to construct a dual-level PES. Using this PES, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations and internal energy distributions has been carried out for the F + CH4 and F + CD4 reactions and the theoretical results have been compared with the available experimental data.  相似文献   

2.
An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.  相似文献   

3.
This work presents a new ground state potential energy surface (PES) for CH. The potential is tested using quasi classical trajectory (QCT) and quantum reactive scattering methods for the H + CH(+) reaction. Cross sections and rate coefficients for all reaction channels up to 300 K are calculated. The abstraction rate coefficients follow the expected slightly decreasing behaviour above 90 K, but have a positive gradient with lower temperatures. The inelastic collision and exchange reaction rate constants are increasing monotonically with temperature. The rate coefficients of the exchange reaction differ significantly between QCT and quantum reactive scattering, due to intrinsic shortcomings of the QCT final state distributions.  相似文献   

4.
Several reaction pathways on the potential energy surface (PES) for the reaction of CH3O2 radicals with Br atoms are examined using both ab initio and density functional methods. Analysis of the PES suggests the presence of the stable intermediates CH3OOBr and CH3OBrO. CH3OOBr is calculated to be more stable than CH3OBrO by 9.7 kcal mol(-1) with a significant barrier preventing formation of CH3OBrO via isomerization of CH3OOBr. The relative importance of bi- and termolecular product channels resulting from the initially formed CH3OOBr adduct are assessed based on calculated barriers to the formation of CH2OO + HBr, CH3O + BrO, CH3Br + O2, and CH2O + HOBr.  相似文献   

5.
We report an analytical ab initio three degrees of freedom (3D) spin-orbit-correction surface for the entrance channel of the F + methane reaction obtained by fitting the differences between the spin-orbit (SO) and non-relativistic electronic ground state energies computed at the MRCI+Q/aug-cc-pVTZ level of theory. The 3D model surface is given in terms of the distance, R(C-F), and relative orientation, Euler angles ? and θ, of the reactants treating CH(4) as a rigid rotor. The full-dimensional (12D) "hybrid" SO-corrected potential energy surface (PES) is obtained from the 3D SO-correction surface and a 12D non-SO PES. The SO interaction has a significant effect in the entrance-channel van der Waals region, whereas the effect on the energy at the early saddle point is only ~5% of that at the reactant asymptote; thus, the SO correction increases the barrier height by ~122 cm(-1). The 12D quasiclassical trajectory calculations for the F + CH(4) and F + CHD(3) reactions show that the SO effects decrease the cross sections by a factor of 2-4 at low collision energies and the effects are less significant as the collision energy increases. The inclusion of the SO correction in the PES does not change the product state distributions.  相似文献   

6.
The radical-molecule reaction F+propene (CH2CHCH3) was studied in detail by using the Becke's three parameter Lee-Yang-Parr-B3LYP/6-311G(d,p) and coupled cluster with single, double, and triple excitationsCCSD(T)/6-311+G(2d,2p). It is shown that F+propene reaction mainly occurs through complex-formation mechanism: F attacks the double bond of propene leading to the formation of complex 1 and complex 2. As the two radical complexes are metastable, they can quickly dissociate to H+C3H5F, CH3+C2H3F and HF+C3H5. Based on the ab initio calculations, the CH3+C2H3F is the main channel, and the H elimination and HF forming channels also provide some contribution to products. The calculated values are in good agreement with the recently reported experimental results.  相似文献   

7.
A modified and recalibrated potential energy surface for the gas-phase Cl+CH4-->HCl+CH3 reaction is reported and tested. It is completely symmetric with respect to the permutation of the four methane hydrogen atoms and is calibrated with respect to updated experimental and theoretical stationary point properties and experimental forward thermal rate constants. From the kinetics point of view, the forward and reverse thermal rate constants and the activation energies were calculated using the variational transition-state theory with semiclassical transmission coefficients over a wide temperature range of 150-2500 K. The theoretical results reproduce the available experimental data, with a small curvature of the Arrhenius plot which indicates the role of tunneling in this hydrogen abstraction reaction. A dynamics study was also performed on this PES using quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found a noticeable internal energy in the coproduct methyl radical, both in the ground-state [CH4 (v=0)] and vibrationally excited [CH4 (v=1)] reactions. This CH3 internal energy was directly precluded in some experiments or oversimplified in previous theoretical studies using pseudotriatomic models. Second, our QCT calculations give HCl rotational distributions slightly hotter than those in experiment, but correctly describing the experimental trend of decreasing the HCl product rotation excitation in going from HCl (v'=0) to HCl (v'=1) for the CH4 (v=1) reaction. Third, the state specific scattering distributions present a reasonable agreement with experiment, although they tend to make the reaction more forward and backward scattered than found experimentally probably because of the hotter rotational distribution and the deficiencies of the QCT methods.  相似文献   

8.
We present an electronic structure and dynamics study of the F+CH4-->HF+CH3 reaction. CCSD(T)/aug-cc-pVDZ geometry optimizations, harmonic-frequency, and energy calculations indicate that the potential-energy surface is remarkably isotropic near the transition state. In addition, while the saddle-point F-H-C angle is 180 degrees using MP2 methods, CCSD(T) geometry optimizations predict a bent transition state, with a 153 degrees F-H-C angle. We use these high-quality ab initio data to reparametrize the parameter-model 3 (PM3) semiempirical Hamiltonian so that calculations with the improved Hamiltonian and employing restricted open-shell wave functions agree with the higher accuracy data. Using this specific-reaction-parameter PM3 semiempirical Hamiltonian (SRP-PM3), we investigate the reaction dynamics by propagating quasiclassical trajectories. The results of our calculations using the SRP-PM3 Hamiltonian are compared with experiments and with the estimates of two recently reported potential-energy surfaces. The trajectory calculations using the SRP-PM3 Hamiltonian reproduce quantitatively the measured HF vibrational distributions. The calculations also agree with the experimental HF rotational distributions and capture the essential features of the excitation function. The results of the SRP semiempirical Hamiltonian developed here clearly improve over those using the two prior potential-energy surfaces and suggest that reparametrization of semiempirical Hamiltonians is a promising strategy to develop accurate potential-energy surfaces for reaction dynamics studies of polyatomic systems.  相似文献   

9.
The O((3)P) + CH(4) reaction has been investigated using the quasi-classical trajectory (QCT) method and an ab initio pseudotriatomic potential energy surface (PES). This has been mainly motivated by very recent experiments which support the reliability of the triatomic modeling even at high collision energy ( = 64 kcal mol(-1)). The QCT results agree rather well with the experiments (translational and angular distributions of products); i.e., the ab initio pseudotriatomic modeling "captures" the essence of the reaction dynamics, although the PES was not optimized for high E(col). Furthermore, similar experiments on the O((3)P) + CD(4) reaction at moderate E(col) (12.49 kcal mol(-1)) have also been of a large interest here and, under these softer reaction conditions, the QCT method leads to results which are almost in quantitative agreement with experiments. The utility of the ab initio pseudotriatomic modeling has also been recognized for other analogous systems (X + CH(4)) but with very different PESs.  相似文献   

10.
The F + CH(3)NHNH(2) reaction mechanism is studied based on ab initio quantum chemistry methods as follows: the minimum energy paths (MEPs) are computed at the UMP2/6-311++G(d,p) level; the geometries, harmonic vibrational frequencies, and energies of all stationary points are predicted at the same level of theory; further, the energies of stationary points and the points along the MEPs are refined by UCCSD(T)/6-311++g(3df,2p). The ab initio study shows that, when the F atom approaches CH(3)NHNH(2), the heavy atoms, namely N and C atoms, are the favorable combining points. For the two N atoms, two prereaction complexes with C(s) symmetry are generated and there exists seven possible subsequent reaction routes, of which routes 1, 2, 5, and 7 are the main channels. Routes 1, 2, and 5 are associated with HF elimination, with H from the amino group or imido group, and route 7 involves the N-N bond break. Routes 3 and 6 with relation to HF elimination with H from methyl, and route 4 involved the C-N bond break, are all energetically disfavored. For the C atom, the attack of F results in the break of the C-N bond and the products are CH(3)F + NHNH(2). This route is very competitive.  相似文献   

11.
12.
沈长圣  吴韬  居冠之  边文生 《化学学报》2001,59(11):1919-1924
用辛准经典轨迹法模拟了Cl+H2反应在mBW2势能面上的动力学行为。研究了各种初始条件下的反应碰撞截面,产物的能量分配,角度分布和态分布。另外,我们还比较了反应物的三种能量形式(平动能,转动能和振动能)对反庆的有效性。  相似文献   

13.
Quasi-classical trajectory (QCT) calculations on a model potential energy surface (PES) show strong deviations from statistical Rice-Ramsperger-Kassel-Marcus (RRKM) rate theory for the decomposition reaction (1) CH3OONO* --> CH3O + NO2, where the highly excited CH3OONO* was formed by (2) CH3O2 + NO --> CH3OONO*. The model PES accurately describes the vibrational frequencies, structures, and thermochemistry of the cis- and trans-CH3OONO isomers; it includes cis-trans isomerization in addition to reactions 1 and 2 but does not include nitrate formation, which is too slow to affect the decay rate of CH3OONO*. The QCT results give a strongly time-dependent rate constant for decomposition and damped oscillations in the decomposition rate, not predicted by statistical rate theory. Anharmonicity is shown to play an important role in reducing the rate constant by a factor of 10 smaller than predicted using classical harmonic RRKM theory (microcanonical variational transition state theory). Master equation simulations of organic nitrate yields published previously by two groups assumed that RRKM theory is accurate for reactions 1 and 2 but required surprising parametrizations to fit experimental nitrate yield data. In the present work, it is hypothesized that the non-RRKM rate of reaction (1) and vibrational anharmonicity are at least partly responsible for the surprising parameters.  相似文献   

14.
We study the reaction Cl + CH(4)--> HCl + CH(3) using a 2-D potential energy surface obtained by fitting a double Morse analytical function to high level (CCSD(T)/cc-pVTZ//MP2/cc-pVTZ)ab initio data. Dynamics simulations are performed in hyperspherical coordinates with the close-coupled equations being solved using R-matrix propagation. Quantum contributions from spectator modes are included via a harmonic zero-point correction to the ab initio data prior to fitting the potential. This is the first time this method has been applied to a heavy-light-heavy reaction and the first time it has been used to study differential cross sections. We find thermal rate constants and state-to-state differential cross sections which are in good agreement with experimental data. We discuss the applicability of our method to the study of kinetic isotope effects (KIEs), which we derive for the CH(4)/CD(4) substitution. The calculated KIE compares favourably with experiment. Finally, we discuss the sensitivity of the results of dynamics simulations on the accuracy of the fitted potential.  相似文献   

15.
Potential energy surfaces for the reactions of CH4+ with H2, HD, and D2 have been calculated using high-level ab initio methods, including coupled cluster theory, complete active space self-consistent field, and multireference configuration interaction. The energies are extrapolated to the complete basis set limit using the basis sets aug-cc-pVXZ (X = D, T, Q, 5, 6). The CH4+ + H2 reaction produces CH5+ and H exclusively. Three types of reaction mechanisms have been found, namely, complex-forming abstraction, scrambling, and S(N)2 displacement. The abstraction occurs via a very minor barrier and it is dominant. The other two mechanisms are negligible because of the significant barriers involved. Quantum phase space theory and variational transition state theory are used to calculate the rate coefficients as a function of temperatures in the range of 5-1000 K. The theoretical rate coefficients are compared with the available experimental data and the discrepancy is discussed. The significance of isotope effect, tunneling effect, and nuclear spin effect is investigated. The title reaction is predicted to be slightly exothermic with DeltaHr = -12.7 +/- 5.2 kJ/mol at 0 K.  相似文献   

16.
We present a global full dimensional potential energy surface (PES) for the Cl + O(3)→ ClO + O(2) reaction, which is an elementary step in a catalytic cycle that leads to the destruction of ozone in the stratosphere. The PES is constructed by interpolation of quantum chemistry data using the method developed by Collins and co-workers. Ab initio data points (energy, gradients and Hessian matrix elements) have been calculated at the UQCISD/aug-cc-pVDZ (unrestricted quadratic configuration interaction with single and double excitations) level of theory. The ab initio calculations predict a markedly non-coplanar (dihedral angle of 80°) transition state for the reaction, located very early in the reactant valley and slightly below the energy of the reactants as long as the spin-orbit splitting is neglected. Quasiclassical trajectory (QCT) calculations have been carried out at several collision energies to investigate the reaction dynamics. The QCT excitation function shows no threshold, displays a minimum at a collision energy of 2.5 kcal mol(-1), and then increases monotonically at larger collision energies. This behaviour is consistent with a barrierless reaction dominated by an oxygen-abstraction mechanism. The calculated product vibrational distributions (strongly inverted for ClO) and rate constants are compared with experimental determinations. Differential cross sections (DCS) summed over all final states are found to be in fairly good agreement with those derived from crossed molecular beam experiments.  相似文献   

17.
The potential energy surface for the CH + N2 reaction was reexamined with multireference ab initio electronic structure methods employing basis sets up to aug-cc-pvqz. Comparisons with related CCSD(T) calculations were also made. The multireference ab initio calculations indicate significant shortcomings in single reference based methods for two key rate-limiting transition states. Transition state theory calculations incorporating the revised best estimates for the transition state properties provide order of magnitude changes in the predicted rate coefficient in the temperature range of importance to the mechanism for prompt NO formation. At higher temperatures, two distinct pathways make a significant contribution to the kinetics. A key part of the transition state analysis involves a variable reaction coordinate transition state theory treatment for the formation of H + NCN from HNCN. The present predictions for the rate coefficients resolve the discrepancy between prior theory and very recent experimental measurements.  相似文献   

18.
A full-dimensional, ab initio based potential energy surface (PES) for CH(5)(+), which can describe dissociation is reported. The PES is a precise fit to 36173 coupled-cluster [CCSD(T)] calculations of electronic energies done using an aug-cc-pVTZ basis. The fit uses a polynomial basis that is invariant with respect to permutation of the five H atoms, and thus describes all 120 equivalent minima. The rms fitting error is 78.1 cm(-1) for the entire data set of energies up to 30,000 cm(-1) and a normal-mode analysis of CH(5)(+) also verifies the accuracy of the fit. Two saddle points have been located on the surface as well and compared with previous theoretical work. The PES dissociates correctly to the fragments CH(3)(+) + H(2) and the equilibrium geometry and normal-mode analyses of these fragments are also presented. Diffusion Monte Carlo calculations are done for the zero-point energies of CH(5)(+) (and some isotopologs) as well as for the separated fragments of CH(5)(+), CH(3)(+) + H(2) and those of CH(4)D(+), CH(3)(+) + HD and CH(2)D(+) + H(2). Values of D(0) are reported for these dissociations. A molecular dynamics calculation of CH(4)D(+) dissociation at one total energy is also performed to both validate the applicability of the PES for dynamics studies as well as to test a simple classical statistical prediction of the branching ratio of the dissociation products.  相似文献   

19.
The effects of the reactant bending excitations in the F+CHD(3) reaction are investigated by crossed molecular beam experiments and quasiclassical trajectory (QCT) calculations using a high-quality ab initio potential energy surface. The collision energy (E(c)) dependence of the cross sections of the F+CHD(3)(v(b)=0,1) reactions for the correlated product pairs HF(v('))+CD(3)(v(2)=0,1) and DF(v('))+CHD(2)(v(4)=0,1) is obtained. Both experiment and theory show that the bending excitation activates the reaction at low E(c) and begins to inactivate at higher E(c). The experimental F+CHD(3)(v(b)=1) excitation functions display surprising peak features, especially for the HF(v(')=3)+CD(3)(v(2)=0,1) channels, indicating reactive resonances (quantum effects), which cannot be captured by quasiclassical calculations. The reactant state-specific QCT calculations predict that the v(5)(e) bending mode excitation is the most efficient to drive the reaction and the v(6)(e) and v(5)(e) modes enhance the DF and HF channels, respectively.  相似文献   

20.
The multiple channel reaction H + CH(3)CH(2)Cl --> products has been studied by the ab initio direct dynamics method. The potential energy surface information is calculated at the MP2/6-311G(d,p) level of theory. The energies along the minimum energy path are further improved by single-point energy calculations at the PMP4(SDTQ)/6-311+G(3df,2p) level of theory. For the reaction, four reaction channels (one chlorine abstraction, one alpha-hydrogen abstraction, and two beta-hydrogen abstractions) have been identified. The rate constants for each reaction channel are calculated by using canonical variational transition state theory incorporating the small-curvature tunneling correction in the temperature range 298-5000 K. The total rate constants, which are calculated from the sum of the individual rate constants, are in good agreement with the experimental data. The calculated temperature dependence of the branching fractions indicates that for the title reaction, H-abstraction reaction is the major reaction channel in the whole temperature range 298-5000 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号