首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The stabilizing (emulsifying) effect of a symmetric diblock copolymer in the mixture of two immiscible homopolymers is considered. The equilibrium value of the interfacial area per copolymer chain is calculated via minimization of the free energy of the mixture for a fixed number of copolymer chains adsorbed to the interface. The size and concentration of droplets of the minor component are determined for the equilibrium state. The particles' radius is shown to be inversely proportional to the copolymer concentration, the coefficient of proportionality being dependent on the Flory-Huggins parameter and chain length. The penetration of homopolymer segments into the copolymer layer on the interface is taken into account and proved to be important for stabilization of the droplets by symmetric copolymers. The conditions of the validity of the presented approach are discussed in detail.  相似文献   

2.
Symmetric polystyrene (PS)–poly(dimethylsiloxane) (PDMS) diblock copolymers were mixed into a 20% dispersion of PDMS in PS. The effect of adding the block copolymer on the blend morphology was examined as a function of the block copolymer molecular weight (Mn,bcp), concentration, and viscosity ratio (ηr). When blended together with the PS and PDMS homopolymers, most of the block copolymer appeared as micelles in the PS matrix. Even when the copolymer was preblended into the PDMS dispersed phase, block copolymer micelles in the PS matrix phase were observed with transmission electron microscopy after mixing. Adding 16 kg/mol PS–PDMS block copolymer dramatically reduced the PDMS particle size, but the morphology, as examined by scanning electron microscopy, was unstable upon thermal annealing. Adding 156 kg/mol block copolymer yielded particle sizes similar to those of blends with 40 or 83 kg/mol block copolymers, but only blends with 83 kg/mol block copolymer were stable after annealing. For a given value of Mn,bcp, a minimum PDMS particle size was observed when ηr ~ 1. When ηr = 2.6, thermally stable, submicrometer particles as small as 0.6 μm were observed after the addition of only 3% PS–PDMS diblock (number‐average molecular weight = 83 kg/mol) to the blend. As little as 1% 83 kg/mol block copolymer was sufficient to stabilize a 20% dispersion of 1.1‐μm PDMS particles in PS. Droplet size reduction was attributed to the prevention of coalescence caused by small amounts of block copolymer at the interface. The conditions under which block copolymer interfacial adsorption and interpenetration were facilitated were explained with Leibler's brush theory. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 346–357, 2002; DOI 10.1002/polb.10098  相似文献   

3.
Effects of A-B diblock copolymers on the interfacial tension of a demixed homopolymer A/B blend near the critical point has been studied theoretically and experimentally. A simple theory developed here predicts that a crossover from weak to strong reduction of interfacial tension with addition of a small amount of diblock copolymers can be observed upon going away from the critical temperature, where the interfacial tension exhibits a maximum in its temperature dependence, if polymeric index of the diblock copolymer is much larger than that of the homopolymers. The temperature of the maximum approaches the critical point with increasing copolymer concentration. These predictions have experimentally been confirmed for a demixed oligo(styrene)/oligo(dimethylsiloxane) blend with poly(styrene)-block-poly(dimethylsiloxane).  相似文献   

4.
The influence of oil type (n-hexadecane, 1-decanol, n-decane), droplet composition (hexadecane:decanol), and emulsifier type (Tween 20, gum arabic) on droplet growth in oil-in-water emulsions was studied. Droplet size distributions of emulsions were measured over time (0-120 h) by laser diffraction and ultrasonic spectroscopy. Emulsions containing oil molecules of low polarity and low water solubility (hexadecane) were stable to droplet growth, irrespective of the emulsifier used to stabilize the droplets. Emulsions containing oil molecules of low polarity and relatively high water solubility (decane) were stable to coalescence, but unstable to Ostwald ripening, irrespective of emulsifier. Droplet growth in emulsions containing oil molecules of relatively high polarity and high water solubility (decanol) depended on emulsifier type. Decanol droplets stabilized by Tween 20 were stable to droplet growth in concentrated emulsions but unstable when the emulsions were diluted. Decanol droplets stabilized by gum arabic exhibited rapid and extensive droplet growth, probably due to a combination of Ostwald ripening and coalescence. We proposed that coalescence was caused by the relatively low interfacial tension at the decanol-water boundary, which meant that the gum arabic did not absorb strongly to the droplet surfaces and therefore did not prevent the droplets from coming into close proximity.  相似文献   

5.
The effects of molecular weight and concentration of poly (methyl methacrylate) (PMMA) homopolymer or symmetric short polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymer on the size of the nanostructures of its blends with symmetric long PS-b-PMMA diblock copolymer have been investigated by atomic force microscopy. By careful controlling of the film thickness, solvent selectivity, and annealing time, PMMA cylindrical microdomains oriented normal to the film surface were obtained in all thin films. With the addition of both low- and high-molecular-weight PMMA homopolymers, the cylindrical domain sizes increased although it was less obvious for the lower molecular weight homopolymer. In contrast to the homopolymer, adding the short chain diblock copolymer resulted in a decrease in the cylindrical domain size, which was ascribed to the reduction of the interfacial tension and increase in the stretching energy.  相似文献   

6.
The coalescence process of two droplets in simple shear flow was modeled and simulated by the diffuse interface method. The collision between two droplets was investigated. The systems with small Peclet number, which denotes highly diffuse ability of concentration, were found to coalesce faster and easier due to the overlap of interfacial layers. The effect of matrix elasticity on droplet coalescence was studied thoroughly. The matrix elasticity was found to decrease the hydrodynamic interactions between droplets, and delay the coalescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1856–1869, 2007  相似文献   

7.
以PS PP共混体系为研究对象 ,研究了非相容聚合物体系混炼过程中分散相含量、剪切速率及聚合物弹性等对分散相粒径变化的影响 ,对平衡态分散相粒径的变化进行了预测 ,并对其计算公式进行了新的改进 .研究表明 ,分散相浓度较低时 ,分散相粒径与分散相体积分数呈线性增长关系 ;在较高浓度时 ,分散相粒子的聚结作用明显 ,公式应加以修正 .实验中还观察到 ,对于PS(连续相 ) PP(分散相 )共混体系 ,随着剪切速率的增大 ,分散相粒径先不断减小 ,达到一极小值后 ,却又有所增大  相似文献   

8.
The structure of diblock copolymer melts under a single external electric or shear field, as well as under combined orthogonal external fields was investigated using a cell dynamic system. The phase structure was determined by coupling the effects of the external fields with the original structure of the bulk free of external fields. The single electric or shear field generated long-range cylinders in asymmetric A4mB6m diblock copolymers and distorted lamellae in symmetric A5mB5m diblock copolymers. Successive orthogonal shear followed by an electric external field generated long-range lamellae in symmetrical A5mB5m systems. However, the simultaneous orthogonal electric and shear fields could more easily form long-range lamellae than the sequential orthogonal fields. The dynamical processes in diblock copolymer melts under orthogonal fields have been also examined.  相似文献   

9.
The well-known phenomena of Plateau-Rayleigh instability has been simulated using computational fluid dynamics (CFD). The breakup of a liquid film into an array of droplets on a cylindrical element was simulated using a volume-of-fluid (VOF) solver and compared to experimental observations and existing theory. It is demonstrated that the VOF method can correctly predict the breakup of thins films into an array of either axisymmetric droplets or clam-shell droplets, depending on the surface energy. The existence of unrealistically large films is precluded. Droplet spacing was found to show reasonable agreement with theory. Droplet motion and displacement under fluid flow was also examined and compared to that in previous studies. It was found that the presence of air flow around the droplet does not influence the stable film thickness; however, it reduces the time required for droplet formation. Novel relationships for droplet displacement were derived from the results.  相似文献   

10.
The behavior of block copolymers at various interfaces is studied by transmission electron microscopy and neutron reflection. A thin film of a symmetric diblock copolymer of styrene and methyl methacrylate forms layer structures when in contact with air and a random copolymer of styrene and acrylonitrile containing 35 wt% acrylonitrile. When the random copolymer has an acrylonitrile content of 25 wt%, a competition between layer formation and diffusion of disordered micelles takes place. Driving force for these processes are different interfacial tensions and a changing miscibility behavior as a function of acrylonitrile contents of the random copolymers. The ordering behavior of a symmetric diblock copolymer of deuterated styrene and isoprene in contact with poly(3,5-dimethyl phenylene ether) is studied by neutron reflection. Polystyrene-block-poly(ethene-co-but-1-ene)-block-polystyrene with cylindrical PS microdomains shows an interfacial phase transition to lamellae near to the interface with different polymers. The morphological studies are in agreement with adhesion data obtained by peel tests on different bilayer specimens.  相似文献   

11.
Utilizing forward recoil spectrometry (FRES), we have determined the segregation isotherm which describes the interfacial excess zi* of diblock copolymers of poly (d8-styrene-b-2-vinylpyridine) (dPS-PVP) at the interface between the homopolymers PS and PVP as a function of ?, the volume fraction of diblock copolymer remaining in the host homopolymer. All the samples were analyzed after annealing at temperatures and times sufficient to achieve equilibrium segregation. The effect of the degree of polymerization of both the diblock copolymers and the host homopolymers on the segregation isotherm is investigated. When the degree of polymerization of the homopolymer is much larger than that of the diblock copolymer, the normalized interfacial excess (zi*/Rg), where Rg is the radius of gyration of an isolated block copolymer chain, is a universal function of that portion of the block copolymer chemical potential due to chain stretching. The existence of such a universal function is predicted by theory and its form is in good agreement with self-consistent mean field calculations. Using these results, one can predict important aspects of the block copolymer segregation (e.g., the saturation interfacial excess) without recourse to the time-consuming numerical calculations. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
利用自洽平均场理论(SCMFT)系统地研究了对称长链和近对称短链两嵌段聚合物混合体系在纳米尺度下的自组装行为.体系中具有较高聚合度的对称长链熔体处于层状相,聚合度较低的近对称短链熔体处于无序相,而其混合体系却随着两种成分的不同比例呈现出有序-无序相转变、有序-有序相转变及有序-无序两相共存等复杂的相行为,计算结果与近期类似体系的实验有着较好的吻合.同时与两种对称的两嵌段聚合物混合体系的计算结果进行了比较,得出这两种体系的异同之处.  相似文献   

13.
The water droplets in the process of electrostatic coalescence are important when studying electrohydrodynamics. In the present study, the electric field and flow field are coupled through the phase field method based on the Cahn–Hilliard formulation. A numerical simulation model of single droplet deformation under the coupling field was established. It simulated the deformation behavior of the movement of a droplet in the continuous phase and took the impact of droplet deformation into consideration which is affected by two-phase flow velocity, electric field strength, the droplet diameter, and the interfacial tension. The results indicated that under the single action of the flow field, when the flow velocity was lower, the droplet diameter was greater as was the droplet deformation degree. When the flow velocity was increased, the droplet deformation degree of a small-diameter droplet was at its maximum size, the large-diameter droplet had a smaller deformation degree, and the middle-diameter droplet was at a minimum deformation degree. When the flow velocity was further increased, the droplet diameter was smaller, and the droplet deformation degree was greater. Under the coupled effect of the electric field and flow field, the two-phase flow velocity and the electric field strength were greater, and the degree of droplet deformation was greater. While the droplet diameter and interfacial tension were smaller, the degree of droplet deformation was greater. Droplet deformation degree increased along with the two-phase flow velocity. The research results provided a theoretical basis for gas–liquid separation with electrostatic coalescence technology.  相似文献   

14.
The effects of interfacial viscosity on the droplet dynamics in simple shear flow and planar hyperbolic flow are investigated by numerical simulation with diffuse interface model. The change of interfacial viscosity results in an apparent slip of interfacial velocity. Interfacial viscosity has been found to have different influence on droplet deformation and coalescence. Smaller interfacial viscosity can stabilize droplet shape in flow field, while larger interfacial viscosity will increase droplet deformation, or even make droplet breakup faster. Different behavior is found in droplet coalescence, where smaller interfacial viscosity speeds up film drainage and droplet coalescence, but larger interfacial viscosity postpones the film drainage process. This is due to the change of film shape from flat‐like for smaller interfacial viscosity to dimple‐like for larger interfacial viscosity. The film drainage time still scales as Ca0 at smaller capillary number (Ca), and Ca1.5 at higher capillary number when the interfacial viscosity changes. The interfacial viscosity only affects the transition between these limiting scaling relationships. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1505–1514, 2008  相似文献   

15.
Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 μm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 μm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.  相似文献   

16.
庄莹  王立权  林嘉平 《高分子学报》2011,(11):1320-1328
采用实空间求解的自洽场理论,研究了两亲性二嵌段共聚物(AB)/均聚物(C)超分子体系在溶液中的自组装行为,其中B疏水嵌段的自由末端与C均聚物的一个末端形成可逆的非共价键.在稀溶液中,AB/C超分子聚合物体系通过自组装形成了一系列不同形貌的胶束,如核-壳-冠的三层胶束和蠕虫状胶束等.研究发现,胶束形貌受到非共价键强度和初...  相似文献   

17.
Recent experiments suggest that thermodynamically stable, bicontinuous microemulsions can be achieved in symmetric ternary blends of two homopolymers and a diblock copolymer by formulating alloys with compositions near mean-field isotropic Lifshitz points. We argue that practical application of this design criterion may require use of homopolymers of unequal molecular weights and block copolymers of different architecture. We demonstrate the existence of, and explicitly locate, mean-field isotropic Lifshitz points in ternary blends with homopolymer molecular weight asymmetry and either AB diblock or ABA triblock copolymer architectures. These calculations considerably expand the parameter space for observing bicontinuous microemulsions and allow for more flexibility in tailoring melt rheological properties and solid-state mechanical properties. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2775–2786, 1997  相似文献   

18.
Coalescence of dispersed micrometer-scale droplets is an essential step toward the separation of emulsions. The thin film between droplets must form, drain, and rupture for coalescence to occur. In surfactant-stabilized emulsions, the film drainage and droplet coalescence processes are known to be hindered because of reduced interfacial mobility. However, a clear correlation between this mobility and the underlying surfactant transport and interfacial response to shear and dilatational deformations is undercharacterized. For microscale droplets, the effect of surfactant transport to the interface and along the interface is often difficult to isolate from other bulk effects on emulsion stability. In this work, we review surfactant-mitigated coalescence in both macroscale and microscale experiments, highlighting the importance of interfacial curvature and length scales when establishing a correlation between coalescence theory and film mobility.  相似文献   

19.
Pseudo-ternary phase diagrams have been constructed for the three-component solvent system (toluene+water+propan-2-ol) containing diblock copolymers of poly(styrene-b-2-vinylpyridine-1-oxide). Microemulsions have been shown to form on the water-rich side of the phase diagram, in the region of the phase boundary without polymer. Dynamic light-scattering experiments have led to droplet size values in the region of 100 nm, with the size depending strongly on the propan-2-ol/water concentration, as well as the amount of solubilised toluene in the core. Viscometry experiments have been carried out to measure polymer aggregation numbers in the microemulsion droplets, and interfacial tension measurements have shown that in the absence of propan-2-ol (effectively a cosurfactant) the limiting value of the oil/water interfacial tension, even an saturation adsorption of the copolymer is 20 mNm–1. However, addition of propan-2-ol reduces the interfacial tension to the very low values generall commensurate with microemulsion formation.  相似文献   

20.
The course of the flow-induced coalescence and the effects of the Marangoni force and steric repulsion on the coalescence suppression in polymer blends containing a compatibilizer were analysed. The expression for coalescence probability of deformable droplets, reliably describing its dependence on the droplet size, was proposed. It was shown that a strong negative correlation exists between the Marangoni force and steric repulsion contributions and the decisive mechanism of the coalescence suppression cannot be determined from the dependence of coalescence on the shear rate. For prediction of the magnitude of the Marangoni force, the knowledge of the rate of copolymer diffusion along the interface is necessary. The influence of simultaneous collisions of three and more droplets and of droplet deformation in flow, which are not included in available theories, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号