首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This research presents an experimental investigation into the interaction of a solitary wave and a submerged thin plate under different angles. Experiments are conducted to measure both velocity and vorticity by using the Particle Image Velocimetry (PIV) technique. Effects of changing the thin plate angle on the wave height and wave speed are analyzed through the use of wave height gages. Vortices are generated when the solitary wave is transmitted over the obstacle. Understanding the formation and location of the vortices will help analyze the obstacle effect on the flow. In the initial stage, a thin plate is located vertically, and flow structures are visualized. The plate is then deviated from the vertical direction towards positive angles (the direction of wave propagation) and towards negative angles in the opposite direction. In order to study the effects of the plate angle on the flow structures, experiments are carried out for three positive and three negative angles. Comparison of the formed vortices at different angles shows the formation of an additional vortex near the bottom of the channel for positive angles, as opposed to negative angles. The larger the angle is, the less the formation time of the vortex at the bottom of the channel will be. The study of the clockwise vortices formed behind the obstacle shows that increasing the plate angle in both directions decreases their strength. The clockwise vortices of negative angles are stronger than those of positive angles. In addition, changing the plate angle to the negative direction causes more wave height and wave speed reduction than changing it to the positive direction.  相似文献   

2.
The dual-jet flow generated by a plane wall jet and a parallel offset jet at an offset ratio of d/w = 1.0 has been investigated using Particle Image Velocimetry (PIV). The particle images are captured, processed, and subsequently used to characterize the flow in terms of the 2D velocity and vorticity distributions. Statistical characteristics of the flow are obtained through ensemble averaging of 360 instantaneous velocity fields. Also presented is a time series of instantaneous flow fields to illustrate the dynamic interaction between the two jets. Results reveal that the near field of the flow is characterized by a periodic large-scale Karman-like vortex shedding similar to what would be expected in the wake of a bluff body. The existence of the Karman-like vortices results in periodic interactions between the two jets; in addition, these vortices produce noticeable impact on the jet outer layers, i.e., the free shear layer of the offset jet and the wall boundary layer of the wall jet. A schematic of vortex/shear layer interaction is proposed to illustrate the flow pattern.  相似文献   

3.
A new type of flow visualization method utilizing a smoke-wire, a high-speed camera with high framing rates and a laser light sheet was employed to delineate the unsteady processes of large-scale vortices in the separated shear layer about a blunt-faced flat plate at Re H  = 560. The sequential images showed that the unsteady behavior of large-scale vortices in the separated shear layer varies as the shedding phases of large-scale vortices alter. Particularly, at a certain phase, a vortex-merging process between the two neighboring large-scale vortices took place. Received: 17 November 1998/Accepted: 1 November 1999  相似文献   

4.
The influence of the chord-to-thickness ratio (c/t) on the spatial characteristics of the separated shear layer over a blunt plate and the leading-edge vortices embedded in the separated shear layer was studied extensively using planar particle image velocimetry (PIV). Three systems corresponding to different shedding modes were chosen for the comparative study: c/t=3, 6 and 9. The Reynolds number based on the plate's thickness (t) was Ret=1×103. A gigapixel CCD camera was used to acquire images with a spatial resolution of 0.06t×0.06t in the measurement range of 9.5t×4.5t. Distributions of statistical quantities, such as the streamline pattern, streamwise velocity fluctuation intensity, shear stress and reverse flow intermittency, showed that the separated shear layer in the system with c/t=3 did not reattach to the plate's surface, while the near‐wake behind the trailing edge was highly unstable because the energetic leading-edge vortices were shed into the wake. The separated shear layer of the system with c/t=6 periodically reattached to the plate's surface, which resulted in intensified fluctuations of the near wake behind the trailing edge. In the longest system (c/t=9), the separated shear layer always reattached to the plate's surface far upstream from the trailing edge, which did not induce large fluctuations of the near wake. Furthermore, the proper orthogonal decomposition (POD) was extensively employed to filter the original velocity fields spatially to identify the large-scale vortices immersed in the separated shear layer easily. The distribution of the v-v correlation coefficients of the spatially filtered flow fields reflected the organized large-scale vortices in the three systems. The number of alternations of the positive and negative correlation coefficients across the flow field were determined to be 1, 2 and 3 for the systems with c/t=3, 6 and 9, respectively; this is in agreement with the shedding mode of each system. The distribution of the swirling strength of the separated shear layer accurately determined the positions and structures of the large-scale vortices formed above the plate surface.  相似文献   

5.
为了能够更好地了解不定源喷嘴(indeterminate origin nozzle)射流中的物理过程,本文应用平面激光诱导荧光技术对一个大尺度的水射流进行了实验研究。流场显示的实验结果表明不定源喷嘴在射流的剪切层引入了蘑菇形反向旋转的涡对。这些涡的矢量方向与射流方向相同或相反,被称为流向涡(streamwise vortex)。由于射流中存在开尔文-亥姆霍兹不稳定,每当一个横向涡(spanwise vortex,即涡的矢量方向与射流方向垂直)从喷嘴脱流时会产生瞬时的低压,该瞬时低压促使向内发展的流向涡对在喷嘴的凹槽处生成。这些涡对在向下游流动的过程中会重组并在喷嘴的尖峰面生成向外发展的涡对。这些流向涡极大地影响了射流的发展。流向涡与横向涡的相互作用促使射流更早地发展成为湍流。由于流向涡同时也在射流中引入了径向的剪切流动,因此导致了更多的湍流生成从而增强了射流与周围流体的混合。  相似文献   

6.
为了能够更好地了解不定源喷嘴(indeterminate origin nozzle)射流中的物理过程,本文应用平面激光诱导荧光技术对一个大尺度的水射流进行了实验研究。流场显示的实验结果表明不定源喷嘴在射流的剪切层引入了蘑菇形反向旋转的涡对。这些涡的矢量方向与射流方向相同或相反,被称为流向涡(streamwise vortex)。由于射流中存在开尔文一亥姆霍兹不稳定,每当一个横向涡(spanwisevortex,即涡的矢量方向与射流方向垂直)从喷嘴脱流时会产生瞬时的低压,该瞬时低压促使向内发展的流向涡对在喷嘴的凹槽处生成。这些涡对在向下游流动的过程中会重组并在喷嘴的尖峰面生成向外发展的涡对。这些流向涡极大地影响了射流的发展。流向涡与横向涡的相互作用促使射流更早地发展成为湍流。由于流向涡同时也在射流中引入了径向的剪切流动,因此导致了更多的湍流生成从而增强了射流与周围流体的混合。  相似文献   

7.
The flow past an interface piercing circular cylinder at the Reynolds number Re=2.7×104 and the Froude numbers Fr=0.2 and 0.8 is investigated using large-eddy simulation. A Lagrangian dynamic subgrid-scale model and a level set based sharp interface method are used for the spatially filtered turbulence closure and the air-water interface treatment, respectively. The mean interface elevation and the rms of interface fluctuations from the simulation are in excellent agreement with the available experimental data. The organized periodic vortex shedding observed in the deep flow is attenuated and replaced by small-scale vortices at the interface. The streamwise vorticity and the outward transverse velocity generated near the edge of the separated region, which enforces the separated shear layers to deviate from each other and restrains their interaction, are primarily responsible for the devitalization of the periodic vortex shedding at the interface. The lateral gradient of the difference between the vertical and transverse Reynolds normal stresses, increasing with the Froude number, is the main source of the streamwise vorticity and the outward transverse velocity at the interface.  相似文献   

8.
二维激波与剪切层相互作用的直接数值模拟研究   总被引:1,自引:0,他引:1  
采用五阶weighed esseritially non-oscillatory (WENO) 格式和三阶total variation diminishing (TVD) Runge-Kutta 格式, 通过求解二维非定常Navier-Stokes 方程, 直接数值模拟了激波与剪切层相互作用, 目的在于揭示激波与剪切层相互作用过程中噪声产生的机理. 研究发现:(1) 当入射激波穿过剪切层时, 剪切层中心位置向下层区域偏移;(2) 入射激波穿过剪切层产生小激波, 在小激波与剪切层接触点处产生声波并向外辐射;(3) 反射激波穿过剪切层后形成了分段弧状激波;(4) 当反射激波穿过剪切层时, 激波在鞍点处泄漏并向外辐射声波, 这是一种激波泄漏机制.  相似文献   

9.
A vertical 2 -D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid( VOF) method was used to reconstruct the free surface. The model was verified by experimental data. Then the model was used to simulate solitary wave interaction with submerged, alternative submerged and emerged semi-circular breakwaters. The process of velocity field, pressure field and the wave surface near the breakwaters was obtained. It is found that when the semi-circular breakwater is submerged, a large vortex will be generated at the bottom of the lee side wall of the breakwater ; when the still water depth is equal to the radius of the semi-circular breakwater, a pair of large vortices will be generated near the shoreward wall of the semi-circular breakwater due to wave impacting, but the velocity near the bottom of the lee side wall of the breakwater is always relatively small. When the semi-circular breakwater is emerged, and solitary wave cannot overtop it, the solitary wave surface will run up and down secondarily during reflecting from the breakwater. It can be further used to estate the diffusing and transportation of the contamination and transportation of suspended sediment.  相似文献   

10.
The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.  相似文献   

11.
 The flow field generated by unventilated two parallel jets has been investigated using LDA. The two nozzles each with an aspect ratio of 24 were separated by 4.25 nozzle widths. Results show that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. It was shown that the two-dimensionality of the flow was greatly enhanced by the installation of side plates and that the flow was independent of Reynolds number between 8300 and 19300. Acoustic excitation introduced at the outer shear layer mode has been shown to reduce the size of the potential core, recirculation zone, merging length and combined length but enhance jet spreading, streamwise velocity decay and volume entrainment. Received: 18 November 1994/Accepted: 26 July 1996  相似文献   

12.
Proper Orthogonal Decomposition has been applied to Time-Resolved Particle Image Velocimetry data describing the dynamics of laminar separation bubbles. The mutual orthonormality of the POD modes of the velocity components has been accounted for to separate the contributions to the Reynolds stress tensor due to the different modes, thus to the stress production and the mean flow energy dissipation. The low frequency motion of the separated shear layer, the shedding phenomenon and the formation of finer scales in the rear part of the bubble have been clearly isolated, and their role in the turbulence production identified by means of reduced order models. The low frequency activity observed in the fore part of the separated flow region drives the turbulence production through the normal strain mechanism. Only in the rear part of the bubble the high shear between adjacent vortices establishes the more common shear strain production mechanism, that definitively dominates the transition process. A limited number of modes captures almost the whole process responsible for stress production, even though both Reynolds number and free-stream turbulence intensity levels affect the number of modes involved in the stress generation for different dynamics.  相似文献   

13.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.  相似文献   

14.
The shedding process in the near wake of a surface-mounted, square cross-section cylinder of height-to-width aspect ratio 4 at a Reynolds number of 12,000 based on free-stream velocity and the obstacle width was investigated. The boundary layer thickness was 0.18 obstacle heights based on 99% free-stream velocity. The study is performed using planar high frame-rate particle image velocimetry synchronized with pressure measurements and hot-wire anemometry. Spatial cross-correlation, instantaneous phase relationships, and phase-averaged velocity data are reported. Two dominant vortex-shedding regimes are observed. During intervals of high-amplitude pressure fluctuations on the obstacle side faces, alternate formation and shedding of vortices is observed (regime A) similar to the von Kármán process. Regime B is characterized by two co-existing vortices in the obstacle lee throughout the shedding cycle and is observed within low-amplitude pressure fluctuation intervals. Despite the coexisting vortices in the base region, opposite sign vorticity is still shed out-of-phase downstream of this vortex pair giving rise to a staggered arrangement of counter-rotating vortices downstream. While the probability of occurrence of Regime B increases toward the free end, the amplitude modulation remains coherent along the obstacle height. Conditionally phase-averaged reconstructions of the flow field are consistent with the spatial distribution of the phase relationships and their probability density function. Earlier observations are reconciled showing that the symmetric shedding of vortices is a rare occurrence.  相似文献   

15.
This study reveals the interaction patterns of separated shear layers from a circular cylinder with a short downstream plate and their reflection on the frequency and the formation length of the vortices from the cylinder as a function of plate location relative to the cylinder. The effect of horizontal (G/D) and vertical (Z/D) distances between the cylinder and the plate on the near wake is studied via Digital Particle Image Velocimetry (DPIV) in a water channel for Reynolds numbers of 200, 400 and 750, based on the cylinder diameter D. It is shown that the interaction of wake with the plate of length D can be categorized depending on the horizontal and the vertical distances between the cylinder and the plate. For the vertical distance range of Z/D ≤ 0.7, there is a critical horizontal spacing before which the shear layers from the cylinder are inhibited to form vortices in front of the plate. Resulting elongated recirculation region between the plate and the cylinder suggests modification of the absolutely unstable near wake of free circular cylinder in favor of convective instability. Z/D = 0.9 provides a passage from Z/D ≤ 0.7 to ≥1.1 and is associated with a dominant effect on the near-wake characteristics of interaction of shear layers from the cylinder with those from the downstream plate. For Z/D ≥ 1.1, there is again, yet a smaller critical horizontal spacing after which vortices interact with decreased downstream plate interference. In this vertical separation distance range, a gap flow between the plate and the cylinder plays a determining role on the formation length and St number of vortices for small horizontal spacing values.  相似文献   

16.
The mutual influence of shortwave oscillations (instability waves of the separated boundary layer) and longwave disturbances at the frequency of shedding of periodic largescale vortices is experimentally studied in flow separation behind a step. The possibility of controlling the process of vortex formation by exciting amplifying disturbances in the shear layer is demonstrated.  相似文献   

17.
Problems of origination and evolution of streamwise vortex structures in an initial region of the shear layer of a supersonic jet are discussed. Streamwise vortices are generated with the use of artificial microroughnesses on the internal surface of polished nozzles. Results of Pitot pressure distributions measured in a supersonic nonisobaric jet both in the radial and azimuthal directions are presented. Streamline curvature in the initial region of supersonic nonisobaric jets has a significant effect on evolution of streamwise vortex structures. Azimuthal heterogeneity corresponding to streamwise vortices in the shear layer is analyzed with the use of both the Fourier analysis and wavelet analysis. PACS 47.40.Ki, 47.20.Ft, 02.30.Nw  相似文献   

18.
The velocity field of a circular water jet impinging onto a flat plate has been measured using particle image velocimetry, or PIV. The velocity field has been recorded at several instants in time, producing thousands of simultaneous two-dimensional velocity measurements for each realization. The instantaneous velocity, vorticity and rate-of-strain fields reveal the interaction of vortices near the impinging wall within the radial wall jet downstream from the stagnation point. An ensemble average of the instantaneous fields produces a mean velocity field of the jet flow, which reveals many of the processes leading to boundary layer separation and vortex breakaway within the wall jet. The PIV system extracts the velocity measurements using a two-dimensional autocorrelation method, and can obtain thousands of highly accurate velocity measurements within a few minutes. The structure found in these experiments may be similar to the ground level structure of atmospheric microburst phenomena.A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, 17–19 October 1988  相似文献   

19.
一维颗粒链的一端受到一个有初速度颗粒的撞击,导致颗粒连中产生稳定传播的应力波——高度非线性孤立波,该应力波的波长、波速以及幅值都能保持很好的稳定性,且遇到边界才会反射. 孤立波是一种良好的信息载体,广泛应用于无损检测技术中. 基于孤立波的特性,研究高度非线性孤立波与弹性大板耦合作用,基于赫兹定律和板的内在非弹性理论,推导出晶体链与大板的耦合微分方程组. 用龙格库塔法求解该微分方程组,得到颗粒链中各颗粒的位移、速度曲线. 通过分析回弹波出现的时间、回弹波所携带的能量以及模量、厚度、重力等对孤立波的影响,发现反射孤立波对大板的弹性模量和厚度尤为敏感,此外,颗粒链的摆放对整个耦合过程也有影响. 研究的结果为孤立波对结构体的无损探伤提供了理论依据,该技术可实现对结构体的快速检查和可控性研究.  相似文献   

20.
Laboratory experiments have been performed to investigate the interaction of internal waves with a pycnocline. An oscillating cylinder generated internal wave beams, which were observed using the synthetic schlieren technique. Internal waves incident on the pycnocline layer excited higher-frequency modes. In the absence of shear, a discrete spectrum of harmonic modes was generated due to nonlinear effects. These harmonic modes might play a role in the formation of internal solitary waves which have been observed in ocean pycnoclines. With shear, a continuous spectrum of excited modes was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号