首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Holothurian triterpene glycosides possess various kinds of biological activities, including antifungal, cytotoxic, hemolytic, cytostatic, and immunomodulatory effects. In this study, a rapid extraction method of triterpene glycosides from sea cucumbers using a small column of C18 solid phase was first developed. Furthermore, a novel high‐performance liquid chromatography method coupled with evaporative light scattering detection and electrospray ionization mass spectrometry was established for the determination of each triterpene glycosides from different sea cucumbers. Simultaneous separation of all kind of triterpene glycoside were achieved on a C18 column. A gradient of aqueous acetonitrile was applied, and the method was validated. The liquid chromatography method was applied to the online mass detection to identify the triterpene glycosides in the purified extraction of eight kinds of pulverized sea cucumber from the market of Qingdao, China. The negative mode of [M–H]?/[M–Na]? exclusively shown signals corresponding to the triterpene glycosides previously reported and the MS2 product ions of those ions indicate the specific structure of each triterpene glycoside.  相似文献   

3.
Oleanane‐type triterpene saponins (OTS) are major active ingredients in Glycyrrhiza uralensis. In this work, a rapid‐resolution liquid chromatography with time‐of‐flight mass spectrometry (RRLC/TOF‐MS) method has been developed to characterize and identify OTS from G. uralensis. The major diagnostic ions and fragmentation pathways from thirteen OTS have been characterized for the first time. At a low fragmentor voltage of 120 V in positive ion mode, the precursor ion [M + H]+ or/and [M + Na]+ was obtained for accurate determination of molecular formula. When the fragmentor voltage was increased to 425 V, abundant characteristic fragment ions were observed for structural characterization. Neutral losses of sugar moieties, such as glucuronic acid (GlcA, 176 Da), glucose (Glc, 162 Da) and rhamnose (Rha, 146 Da), were commonly observed in the MS spectra for prediction of the sugar number and sequences. Other typical losses included AcOH (60 Da), CH2O (30 Da), 2 × H2O (2 × 18 Da) and HCOOH (46 Da) from [Aglycone + H–H2O]+ (named [B]+), corresponding to the presence of a C22‐acetyl group, C24‐hydroxyl group, C22‐hydroxyl group or C30‐carboxyl group on the aglycone moiety, respectively. In particular, characteristic ring cleavages of the aglycone moieties on A‐ and B‐rings were observed. Based on the fragmentation patterns of reference compounds, nineteen OTS have been identified in an extract of G. uralensis, thirteen of which were unambiguously identified and the other six were tentatively assigned. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono‐ and diesters. For rapid fingerprinting of these esters, matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF/TOF‐MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono‐ and diester palmitate standards in MALDI‐TOF/TOF‐MS showed that sodium adduct parent masses [M + Na]+ gave much simpler MS2 spectra than radical / protonated [M]+● / [M + H]+ parents. [M + Na]+ fragments yielded diagnostic polyene‐specific eliminations and fatty acid neutral losses, whereas [M]+● / [M + H]+ fragmentation resulted in a multitude of non‐diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na]+ ionization by addition of sodium acetate, and best signal‐to‐noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI‐TOF/TOF‐MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono‐ and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all‐trans esterified esters found in LC were identified with MALDI‐TOF/TOF‐MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In the search for novel natural products in plants, particularly those with potential bioactivity, it is important to efficiently distinguish novel compounds from previously isolated, known compounds, a process known as dereplication. In this study, electrospray ionization‐multiple stage tandem mass spectrometry (ESI‐MSn) was used to study the behaviour of 12 pregnane glycosides and genins previously isolated from Marsdenia tenacissima, a traditional Chinese medicinal plant, as a basis for dereplication of compounds in a plant extract. In addition to [M + Na]+ and [M + NH4]+ ions, a characteristic [M‐glycosyl + H]+ ion was observed in full‐scan mode with in‐source fragmentation. Sequential in‐trap collision‐induced dissociation of [M + Na]+ ions from 11,12‐diesters revealed consistent preferred losses of substituents first from C‐12, then from C‐11, followed by losses of monosaccharide fragments from the C‐3 tri‐ and tetrasaccharide substituents. A crude methanol extract of M. tenacissima stems was analysed using high‐performance liquid chromatography coupled to ESI‐MS. Several previously isolated pregnane glycosides were dereplicated, and the presence of an additional nine novel pregnane glycosides is predicted on the basis of the primary and fragment ions observed, including two with a previously unreported C4H7O C‐11/C‐12 substituent of pregnane glycosides. This study is the first report of prediction of the structures of novel pregnane glycosides in a crude plant extract by a combination of in‐source fragmentation and in‐trap collision‐induced dissociation and supports the usefulness of LC‐ESI‐MSn not only for dereplication of active compounds in extracts of medicinal plants but also for detecting the presence of novel related compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Salvia divinorum is widely cultivated in the US, Mexico, Central and South America and Europe and is consumed for its ability to produce hallucinogenic effects similar to those of other scheduled hallucinogenic drugs, such as LSD. Salvinorin A (SA), a kappa opiod receptor agonist and psychoactive constituent, is found primarily in the leaves and to a lesser extent in the stems of the plant. Herein, the analysis of intact S. divinorum leaves for SA and of acetone extracts separated using thin layer chromatography (TLC) is demonstrated using desorption electrospray ionization (DESI) mass spectrometry. The detection of SA using DESI in the positive ion mode is characterized by several ions associated with the compound – [M+H]+, [M+NH4]+, [M+Na]+, [2M+NH4]+, and [2M+Na]+. Confirmation of the identity of these ions is provided through exact mass measurements using a time‐of‐flight (ToF) mass spectrometer. The presence of SA in the leaves was confirmed by multi‐stage tandem mass spectrometry (MSn) of the [M+H]+ ion using a linear ion trap mass spectrometer. Direct analysis of the leaves revealed several species of salvinorin in addition to SA as confirmed by MSn, including salvinorin B, C, D/E, and divinatorin B. Further, the results from DESI imaging of a TLC separation of a commercial leaf extract and an acetone extract of S. divinorum leaves were in concordance with the TLC/DESI‐MS results of an authentic salvinorin A standard. The present study provides an example of both the direct analysis of intact plant materials for screening illicit substances and the coupling of TLC and DESI‐MS as a simple method for the examination of natural products. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Triterpenoid saponins are difficult to analyze using high‐performance liquid chromatography coupled to UV/vis spectrophotometry due to their lack of chromophores. This study describes the first analytical method for the determination of 15 triterpenoid saponins from the leaves, stems, root bark, and fruits of Acanthopanax henryi, using a high‐performance liquid chromatography with charged aerosol detection coupled with electrospray ionization mass spectrometry method. The separation was carried out on a Kinetex XB‐C18 column with an acetonitrile/water gradient as the mobile phase, followed by charged aerosol detection. The operating conditions of charged aerosol detection were set at 24 kPa for nitrogen pressure and 100 pA for the detection range. Liquid chromatography with electrospray ionization mass spectrometry is described for the identification of compounds in plant samples. The electrospray ionization mass spectrometry method involved the use of the [M + Na]+ and [M + NH4]+ ions for compounds 1 – 15 in the positive ion mode with an extracted ion chromatogram. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, and recovery, then subsequently applied to evaluate the quality of A. henryi.  相似文献   

8.
2,3‐Dimethyl‐2,3‐dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour‐phase detection systems. In this study, the formation and detection of gas‐phase [M+H]+, [M+Li]+, [M+NH4]+ and [M+Na]+ adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The [M+H]+ ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50°C. In contrast, the [M+Na]+ ion demonstrated increasing ion abundance at source temperatures up to 105°C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision‐induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source‐formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the [M+Na]+ adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright © 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

9.
Linear ion-trap multiple-stage mass spectrometric approach (MS n ) towards nearly complete structural elucidation of triacylglycerol (TAG) including (1) assignment the fatty acid substituents on the glycerol backbone and (2) location of the double bond(s) on the unsaturated fatty acyl groups is reported. The characterization is established by the findings that MS2 on the [M+Li]+ ions of TAG yields more abundant ions reflecting losses of the outer fatty acid substituents either as free acids (i.e., [M+Li-R1CO2H]+ and [M+Li-R3CO2H]+ ions) or as lithium salts (i.e., [M+Li-R1CO2Li]+ and [M+Li-R3CO2Li]+ ions) than the ions reflecting the similar losses of the inner fatty acid substituent (i.e., [M+Li-R2CO2Li]+ and [M+Li-R2CO2Li]+ ions). Further dissociation (MS3) of [M+Li-R n CO2H]+ (n=1, 2, or 3) gives rise to the ion series locating the double bonds along the fatty acid chain. These ions arise from charge-remote fragmentations involving β-cleavage with γ-H shift, analogous to those seen for the unsaturated long-chain fatty acids characterized as initiated ions. Significant differences in abundances in the ion pairs reflecting the additional losses of the fatty acid moieties, respectively, were also seen in the MS3 spectra of the [M+Li-R n CO2H]+ and [M+Li-R n CO2Li]+ ions, leading to confirmation of the fatty acid substituents on the glycerol backbone. MS n on the [M+Na]+ and [M+NH4]+ adduct ions also affords location of fatty acid substituents on the glycerol backbone, but not the position of the double bond(s) along the fatty acid chain. Unique ions from internal losses of the glycerol residues were seen in the MS3 spectra of [M+Alk-R n CO2H]+ (n=1, 2, 3) and of [M+Alk-R n CO2Alk]+ (Alk=Li, Na, NH4; n=1, 3). They are signature ions for glycerides and the pathways leading to their formation may involve rearrangements.  相似文献   

10.
Long‐chain ferulic acid esters, such as eicosyl ferulate ( 1 ), show a complex and analytically valuable fragmentation behavior under negative ion electrospay collision‐induced dissociation ((?)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M – H]?, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M – H – Me]‐? radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n + 1? (n = 0–16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M – H – Me – C3H7]? ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M – H – Me – CO]‐? and [M – H – Me – CO2]‐? ions provide some mechanistic and structural insights.  相似文献   

11.
Drugs that are used as medicines and also as growth promoters in veterinary care are considered as emerging environmental contaminants and in recent years concern about their potential risk to ecosystems and human health has risen. In this paper we used a method based on liquid chromatography/electrospray tandem mass spectrometry to analyze eight coccidiostatic compounds: diclazuril, dinitrocarbanilide (the main metabolite of nicarbazin), robenidine, lasalocid, monensin, salinomycin, maduramicin and nasarin. Multiple‐stage mass spectrometry (MSn) based on the precursor ions [M+Na]+ (polyether ionophores), [M+H]+ (robenidine) and [M–H]? (diclazuril and dinitrocarbanilide) was used to study the fragmentation of these compounds. MSn data and genealogical relationships were used to propose a tentative assignment of the different fragment ions. Loss of water, decarboxylations, ketone β‐cleavages and rearrangement of cyclic ethers and amide groups were some of the fragmentations observed for these compounds. Liquid chromatography with a sub‐2 µm particle size column was coupled to tandem mass spectrometry (LC/MS/MS) allowing the separation of these compounds in less than 7 min. Method detection limits ranging from 11 to 71 ng L?1 and run‐to‐run values in terms of relative standard deviation (RSD) (up to 12%) were obtained. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Secondary and tertiary amines have been reported to form [M–H]+ that correspond to dehydrogenation in matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI‐TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N‐benzyl group, which resulted in the formation of [M–D]+ and [M–H]+ ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N‐benzyl group showed high‐intensity [M–D]+ and [M–H]+ ion peaks, whereas those of secondary amines showed low‐intensity ion peaks. Ratios between the peak intensities of [M–D]+ and [M–H]+ greater than 1 suggested chemoselective dehydrogenation at the N‐benzyl groups. The presence of an electron donor group on the N‐benzyl groups enhanced the selectivity. The dehalogenation of amines with an N‐(4‐halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI‐TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The fragmentation pathways of deprotonated cyclic dipeptides have been studied by electrospray ionization multi‐stage mass spectrometry (ESI‐MSn) in negative mode. The results showed that the fragmentation pathways of deprotonated cyclic dipeptides depended significantly on the different substituents, the side chains of amino acid residues at the diketopiperazine ring. In the spectra of deprotonated cyclic dipeptides, the ion [M? H? substituent radical]? was firstly observed in the ESI mode. The characteristic fragment ions [M? H? substituent radical]? and [M? H? (substituent? H)]? could be used as the symbols of particular cyclic dipeptides. The hydrogen/deuterium (H/D) exchange experiment, the high‐resolution mass spectrometry (Q‐TOF) and theoretical calculations were used to rationalize the proposed fragmentation pathways and to verify the differences between the fragmentation pathways. The relative Gibbs free energies (ΔG) of the product ions and possible fragmentation pathways were estimated using the B3LYP/6–31++G(d, p) model. The results have some potential applications in the structural elucidation and interpretation of the mass spectra of homologous compounds and will enrich the gas‐phase ESI‐MS ion chemistry of cyclic dipeptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The fragmentation pathways of protonated imine resveratrol analogues in the gas‐phase were investigated by electrospray ionization–tandem mass spectrometry. Benzyl cations were formed in the imine resveratrol analogues that had an ortho‐hydroxyl group on the benzene ring A. The specific elimination of the quinomethane neutral, CH2 = C6H4 = O, from the two isomeric ions [M1 + H]+ and [M3 + H]+ via the corresponding ion–neutral complexes was observed. The fragmentation pathway for the related meta‐isomer, ion [M2 + H]+ and the other congeners was not observed. Accurate mass measurements and additional experiments carried out with a chlorinated analogue and the trideuterated isotopolog of M1 supported the overall interpretation of the fragmentation phenomena observed. It is very helpful for understanding the intriguing roles of ortho‐hydroxyl effect and ion–neutral complexes in fragmentation reactions and enriching the knowledge of the gas‐phase chemistry of the benzyl cation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Glycopeptidolipids (GPLs) are abundant in the cell walls of different species of mycobacteria and consist of tripeptide‐amino‐alcohol core of D‐Phe‐D‐allo‐Thr‐D‐Ala‐L‐alaninol linked to 3‐hydroxy or 3‐methoxy C26–34 fatty acyl chain at the N‐terminal of D‐Phe via amide linkage, and a 6‐deoxytalose (6‐dTal) and an O‐methyl rhamnose residues, respectively, attach to D‐allo‐Thr and the terminal L‐alaninol. They are important cell‐surface antigens that are implicated in the pathogenesis of opportunistic mycobacteria belonging to the Mycobacterium avium complex. In this contribution, we described multiple‐stage linear ion trap in conjunction with high‐resolution mass spectrometry towards structural characterization of complex GPLs as [M + Na]+ ions isolated from Mycobacterium smegmatis, a fast‐growing and non‐pathogenic mycobacterial species. Following resonance excitation in an ion trap, MSn spectra of the [M + Na]+ ions of GPLs contained mainly b and y series ions that readily determine the peptide sequence. Fragment ions from MSn also afford locating the 6‐dTal and O‐methyl rhamnose residues linked to the D‐allo‐Thr and terminal L‐alaninol of the peptide core, respectively, as well as recognizing the modifications of the glycosides, including their acetylation and methylation states and the presence of succinyl group. The GPL families consisting of 3‐hydroxy fatty acyl and of 3‐methoxy fatty acyl substituents are readily distinguishable. The MS profiles of the GPLs from cells are dependant on the conditions they were grown, and several isobaric isomers were identified for many of the molecular species. These multiple‐stage mass spectrometric approaches give detailed structures of GPL in complex mixtures of which the isomeric structures are difficult to define using other analytical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
High-resolution mass spectrometry (HRMS), hybrid tandem mass spectrometry (MS/MS) (EBqQ), and photoelectron-photoion coincidence (PEPICO) experiments were conducted to examine a possible ortho-ortho effect resulting in a novel [M - 35]+ fragment ion in 2-alkyl-4, 6-dinitrophenols. For compounds having ethyl or larger alkyl substituents, [M35]+ was observed only when [M - 18]+ ions were present, with the ortho nitro group being involved in the reaction to [M- 35]+. For [M - 18]+ and [M - 35]+, HRMS results were consistent with losses of H2O and H2O + OH, respectively, whereas MS/MS results indicated a sequential reaction due to metastable dissociations. The appearance energy determined by PEPICO for [M - 35]+ was found to be greater than the appearance energy for [M - 18]+, thus supporting a sequential reaction. 69–75).  相似文献   

17.
Five glucosylceramides (GlcCers) were isolated by reversed phase high‐performance liquid chromatography from the MeOH extracts of a marine sponge, Haliclona (Reniera) sp., collected from the coast of Ulleung Island, Korea, and analyzed by fast atom bombardment mass spectrometry (FAB–MS) in positive‐ion mode. FAB‐mass spectra of these compounds included protonated molecules [M + H]+ and abundant sodiated molecules [M + Na]+ from a mixture of m‐NBA and NaI. The structures of these GlcCers, which were similar, were elucidated by FAB‐linked scan at constant B/E. To find diagnostic ions for their characterization, the GlcCers were analyzed by collision‐induced dissociation (CID) linked scan at constant B/E. The CID‐linked scan at constant B/E of [M + H]+ and [M + Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge‐remote fragmentation provided important information for the characterization of the fatty N‐acyl chain moiety and the sphingoid base, commonly referred to as the long‐chain base. The product ions at m/z 203 and 502 were diagnostic for the presence of a sodiated sugar ring and β‐D ‐glucosylsphinganine, respectively. For further confirmation of the structure of the fatty N‐acyl chain moiety in each GlcCer, fatty acid methyl esters were obtained from the five GlcCers by methanolysis and analyzed by FAB–MS in positive‐ion mode. On the basis of these dissociation patterns, the structures of the five GlcCers from marine sponge were elucidated. In addition, the accurate mass measurement was performed to obtain the elemental composition of the GlcCers isolated from marine sponge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Triterpene saponins in medicinal plants attract scientific attentions for their structural diversity and significant bioactivities. In this work, a high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS/MS) method is used to rapidly separate and identify triterpene saponins from the extract of Ardisia mamillata Hance (AMH). In the full scan mass spectrum, the accurate determination of molecular formula is obtained by the predominant ion [M + HCOO]? in negative ion mode. As a result, 30 triterpene saponins are identified or tentatively identified in the plant extract. Of these, 17 triterpene saponins are new compounds. In conclusion, the HPLC-ESI-QTOF-MS/MS is an efficient technique to separate and identify triterpene saponins in complex matrices of medicinal plant.  相似文献   

19.
The aim of this study was to present integrated mass spectrometric methods for the structural characterization and identification of flavonoid glycoconjugates. During the liquid chromatography/mass spectrometry analyses, TriVersa NanoMate chip‐based system with nanoelectrospray ionization and fraction collection was combined to a quadrupole time‐of‐flight mass spectrometer. In the extract samples prepared from green leaves of wheat plantlets, 41 flavonoid derivatives were recognized. Part of the target natural products had the full structure being characterized after the registration of mass spectra, where m/z values for protonated [M + H]+ and deprotonated molecules [M ? H]? were annotated. MS2 and pseudo‐MS3 experiments were performed for [M + H]+ or [M ? H]? and aglycone ions (Y0+/?‐type), respectively. It should be underlined that pseudo‐MS3 mass spectra were registered for aglycone product ions in the mass spectra of O‐glycosides present in the extract samples. In many cases, only tentative structural identification of aglycones was possible, mainly because of the presence of numerous C‐monoglycoside or C‐diglycoside in the samples. Acylation of the sugar moiety and/or methylation of the aglycone in the flavonoid glycosides under study was observed. The existence of isobaric and/or isomeric compounds was demonstrated in the extract studied. The collision‐induced dissociation mass spectra registered for C,O‐diglycosides and C,C‐diglycosides did not permit to draw complete structural conclusions about the compounds studied. For the investigated class of natural products, unambiguous classification of sugar moieties linked to the aglycones from the recorded mass spectra was not possible. Registration of the positive and negative ion mass spectra did not lead to the precise conclusion about the glycosylation position at C‐6 or C‐8, and O‐4′ or O‐7 atoms. It was possible, on the basis of the collected MS2 spectra, to differentiate between O‐glycosides and C‐glycosides present in the samples analyzed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new class of diastereomeric pairs of non‐natural amino acid peptides derived from butyloxycarbonyl (Boc‐)protected cis‐(2S,3R)‐ and trans‐(2S,3S)‐β‐norbornene amino acids including a monomeric pair have been investigated by electrospray ionization (ESI) tandem mass spectrometry using quadrupole time‐of‐flight (Q‐TOF) and ion‐trap mass spectrometers. The protonated cis‐BocN‐β‐nbaa (2S,3R) (1) (βnbaa = β‐norbornene amino acid) eliminates the Boc group to form [M+H–Boc+H]+, whereas an additional ion [M+H–C4H8]+ is formed from trans‐BocN‐β‐nbaa (2S,3S) (2). Similarly, it is observed that the peptide diastereomers (di‐, tri‐ and tetra‐), with cis‐BocN‐β‐nbaa (2S,3R)‐ at the N‐terminus, initially eliminate the Boc group to form [M+H–Boc+H]+ which undergo further fragmentation to give a set of product ions that are different for the peptides with trans‐BocN‐β‐nbaa (2S,3S)‐ at the N‐terminus. Thus the Boc group fragments differently depending on the configuration of the amino acid present at the N‐terminus. It is also observed that the peptide bond cleavage in these peptides is less favoured and most of the product ions are formed due to retro‐Diels‐Alder fragmentation. Interestingly, sodium‐cationized peptide diastereomers mainly yield a series of retro‐Diels‐Alder fragment ions which are different for each diastereomer as they are formed starting from [M+Na–Boc+H]+ in peptides with cis‐BocN‐β‐nbaa (2S,3R)‐ at the N‐terminus, and [M+Na–C4H8]+ in peptides with trans‐BocN‐β‐nbaa (2S,3S)‐ at the N‐terminus. All these results clearly indicate that these diastereomeric pairs of peptides yield characteristic product ions which help distinguish the isomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号