首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent observations indicate that the resistance of apoptosis is an important process of tumor metastasis and metastases are the cause of 90% of human cancer death. Etoposide, a semisynthetic derivative of the podophyllotoxins, is a clinically used anti-cancer reagent, but the effects of it on metastatic gastric carcinoma cells are totally unknown. In this study, etoposide induced apoptotic cell death in human gastric adenocarcinoma cell line SGC-7901, derived from metastatic lymph nodes, as evidenced by the analysis of DNA fragmentation, apoptotic body formation, caspase activation, and apoptosis specific changes in cell morphology is demonstrated. The depolarization of mitochondrial membrane and the release of cytochrome c were most early events in etoposide treated SGC-7901 cells, and were followed by caspase-3 activation and PARP cleavage. Caspase-8 activation was not detected under the same condition. Thus, it was proposed that etoposide induces caspase-associated apoptotic cell death in human metastatic gastric carcinoma, which is initiated by mitochondrial cytochrome c release.  相似文献   

2.
3.
The mechanism of caspase-3-dependent apoptosis induced by photodynamic therapy (PDT) of cultured Chinese hamster V79 cells with pheophorbide a (PPa) was investigated. The PPa-PDT induced rapid apoptosis within 30 min after irradiation of cells. This apoptosis was inhibited by the 1O2 quencher N3- and caspase-3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting that 1O2 activated caspase-3 and then caused apoptosis. The intracellular calcium [Ca2+]i chelator (acetoxymethyl)-1,2-bis(o-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA-AM) and the cyclic adenosine monophosphate (cAMP)-increasing agent forskolin also inhibited not only the PPa-PDT-induced activation of caspase-3 but also apoptosis in V79 cells. Furthermore, PPa-PDT-induced cytochrome c release from mitochondria was found to be inhibited by the treatment with BAPTA-AM but not forskolin. These results indicated that [Ca2+]i and cAMP independently serve as regulators for PPa-PDT-induced apoptosis in the upstream of caspase-3.  相似文献   

4.
In this study antiproliferation, cell cycle arrest and apoptosis induced by daphnoretin in human osteosarcoma (HOS) cells were investigated. Antiproliferative activity was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC(50) value of daphnoretin was 3.89 μM after 72 h treatment. Induction of apoptosis was evidenced by apoptotic body appearance and Annexin V-FITC/PI apoptosis detection kit. Flow cytometric analysis indicated daphnoretin arrested the cell cycle in the G2/M phase. Western-blot assay showed that the G2/M phase arrest was accompanied by down-regulation of cdc2, cyclin A and cyclin B1. Moreover, daphnoretin inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade. Our results demonstrated that daphnoretin caused death of HOS cells by blocking cells successively in G2/M phases and activating the caspase-3 pathway.  相似文献   

5.
The state of aggregation of the photosensitizer meso-tetrahydroxyphenylchlorin (mTHPC) in both cell free and intracellular environment was elucidated by comparing its absorption and excitation spectra. In methanol, mTHPC existed as monomers and strongly fluoresced. In aqueous solutions such as phosphate-buffered saline (PBS), mTHPC formed nonfluorescent aggregates. Some portion of mTHPC monomerized in the presence of 10% fetal calf serum PBS. In murine myeloid leukemia M1 and WEHI-3B (JCS) cells, cytoplasmic mTHPC were monomeric. By using organelle-specific fluorescent probes, it was found that mTHPC localized preferentially at the mitochondria and the perinuclear region. Photodynamic treatment of mTHPC-sensitized leukemia cells caused rapid appearance of the apoptogenic protein cytochrome c in the cytosol. Results from flow cytometric analysis showed that the release of cytochrome c was especially pronounced in JCS cells, and well correlated with the extent of apoptotic cell death as reported earlier. Electron microscopy revealed the loss of integrity of the mitochondrial membrane and the appearance of chromatin condensation as early as 1 h after light irradiation. We conclude that rapid release of cytochrome c from photodamaged mitochondria is responsible for the mTHPC-induced apoptosis in the myeloid leukemia JCS and M1 cells.  相似文献   

6.
Photodynamic therapy (PDT) using the second-generation photosensitizer phthalocyanine (Pc) 4 causes mitochondrial damage and induces apoptosis through the release of cytochrome c to the cytosol. Another protein of the mitochondrial intermembrane space, Smac/DIABLO (second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI), is also released to the cytosol in response to apoptotic stimuli and promotes caspase activation by binding IAP. To investigate the possible role of Smac/DIABLO in apoptosis induced by Pc 4-PDT, we transfected Smac/DIABLO (tagged at its C-terminus with green fluorescent protein [GFP]) into MCF-7c3 cells (human breast cancer MCF-7 cells stably transfected with procaspase-3) and DU-145 cells (human prostate cancer cells that express no Bax because of a frameshift insertion mutation). Confocal microscopy showed that recombinant Smac/DIABLO, like cytochrome c, localized to mitochondria and colocalized with MitoTracker Red. Three hours after exposure of MCF-7c3 cells to PDT (200 nM Pc 4 and 150 mJ/cm2 red light), Smac/DIABLO-GFP, as well as cytochrome c, was found largely in the cytosol. In contrast, for DU-145 cells, both Smac/DIABLO-GFP and cytochrome c remained in the mitochondria after PDT. By staining with Hoechst 33,342, typical apoptotic nuclei were observed in MCF-7c3 cells, but not in DU-145 cells, after Pc 4-PDT. These results suggest that the release of Smac/DIABLO from mitochondria may be regulated by a Bax-mediated mechanism and that Smac/DIABLO may cooperate with the cytochrome c-dependent apoptosis pathway. In addition, in MCF-7c3 cells transfected by Smac/DIABLO-GFP, apoptosis induced by Pc 4-PDT was greater than in cells transfected with the GFP vector alone or in untransfected cells, as determined by flow cytometry. Thus, Smac/DIABLO promotes apoptosis after Pc 4-PDT in a Bax-dependent manner and may facilitate the passage of PDT-treated cells through the late steps of apoptosis.  相似文献   

7.
We originally proposed that the subcellular target for one class of photosensitizing agents was the mitochondrion. This classification was based on effects that occur within minutes of irradiation of photosensitized cells: rapid loss of the mitochondrial membrane potential (delta psi m), release of cytochrome c into the cytosol and activation of caspase-3. These effects were followed by the appearance of an apoptotic morphology within 30-90 min. Fluorescence localization studies on three sensitizers initially classified as 'mitochondrial' revealed that these agents bind to a variety of intracellular membranes. The earliest detectable effect of photodamage is the selective loss of the antiapoptotic protein bcl-2 leaving the proapoptotic protein bax undamaged. Bcl-2 photodamage can be detected directly after irradiation of cells at 10 degrees C. Subsequent warming of cultures to 37 degrees C results in loss of delta psi m, release of cytochrome c and activation of caspase-3. The latter appears to amplify the other two effects. Based on results reported here we propose that the apoptotic response to these photosensitizers is derived from selective photodamage to the antiapoptotic protein bcl-2 while leaving the proapoptotic protein bax unaffected.  相似文献   

8.
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. CTX III-induced K562 cell apoptosis was confirmed by DNA fragmentation (DNA ladder, sub-G1 formation) and phosphatidylserine (PS) externalization with an IC(50) value of 1.7 microg/ml at 48 h. A mechanistic analysis demonstrated that CTX III-induced apoptotic cell death was accompanied by up-regulation of both Bax and endonuclease G (Endo G), and downregulation of Bcl-X(L). CTX III had no effect on the levels of Bcl-2, Bid, XIAP survivin, and AIF proteins. CTX III treatment caused loss of the mitochondrial membrane potential (DeltaPsim), release of mitochondrial cytochrome c to the cytosol, and activation of both caspase-9 and -3. CTX III-induced apoptosis was significantly blocked by the broad-spectrum caspase inhibitor Z-VAD-FMK. However, CTX III did not generate reactive oxygen species (ROS) and antioxidants, including N-acetylcysteine and catalase, did not block CTX III-induced apoptosis in K562 cells. Modulation of Bax, Bcl-XL, and the Endo G proteins, release of mitochondrial cytochome c, and activation of caspase-3 and -9 all are involved in the CTX III-triggered apoptotic process in human leukemia K562 cells.  相似文献   

9.
Yu H  Zhang T  Cai L  Qu Y  Hu S  Dong G  Guan R  Xu X  Xing L 《Molecules (Basel, Switzerland)》2011,16(10):8165-8180
In the present study, the anticancer activity of chamaejasmine towards A549 human lung adenocarcinoma cells was investigated. In order to explore the underlying mechanism of cell growth inhibition of chamaejasmine, cell cycle distribution, ROS generation, mitochondrial membrane potential (Δψ(m)) disruption, and expression of cytochrome c, Bax, Bcl-2, caspase-3, caspase-9 and PARP were measured in A549 cells. Chamaejasmine inhibited the growth of A549 cells in a time and dose-dependent manner. The IC?? value was 7.72 μM after 72 h treatment. Chamaejasmine arrested the cell cycle in the G2/M phase and induced apoptosis via a ROS-mediated mitochondria-dependent pathway. Western blot analysis showed that chamaejasmine inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade, and active-caspase-3 was involved in PARP cleavage. All of these signal transduction pathways are involved in initiating apoptosis. To the best of our knowledge, this is the first report demonstrating the cytotoxic activity of chamaejasmine towards A549 in vitro.  相似文献   

10.
Hemoporfin is a novel second-generation porphyrin-related photosensitizer for ovarian cancer photodynamic treatment (PDT). The purpose of this study was to investigate the molecular mechanisms of Hemoporfin-mediated photocytotoxicity. Human epithelial ovarian cancer cell line 3AO was incubated with different concentrations of Hemoporfin, and phototoxic effects of Hemoporfin on cells were determined using a Cell Viability Analyzer. Apoptosis or necrosis was determined by flow cytometry analysis using the Annexin V-FITC apoptosis kit. Cellular caspase activation was determined using the fluorescent assay kit for caspase-3 and caspase-9. Rhodamine123 was used as a mitochondrial probe and Lucifer Yellow as a lysosomal probe to investigate the intracellular localization of Hemoporfin in 3AO cancer cells. We demonstrated that both high-dose (30 microg mL(-1)) and low-dose (3 microg mL(-1)) Hemoporfin significantly reduced the viability of ovarian cancer cell 3AO with light illumination, and the photocytotoxicity was dose-dependent (P < 0.01). Using a mitochondrial fluorescence probe, we demonstrated a distinct mitochondrial aggregation in 3AO cells with a low concentration of Hemoporfin. Loss of mitochondrial membrane potential was detected as early as 1 h after Hemoporfin-mediated PDT. PDT with low-dose Hemoporfin predominantly induced apoptosis but not necrosis, and both caspase-3 and caspase-9 were activated. Based on our results, mitochondria play an important role in the Hemoporfin-induced apoptosis, and mitochondria membrane potential loss initiated apoptosis via the activation of caspases. Understanding the mechanisms involved in PDT-mediated apoptosis may improve its therapeutic efficacy and facilitate its transition into the clinic.  相似文献   

11.
The mechanisms of ultraviolet B (UVB)-induced apoptosis and the role of c-Jun N-terminal kinase (JNK) mitogen activated protein kinase (MAPK) in murine peritoneal macrophages, the terminally differentiated non-dividing cells were investigated. Exposure of macrophages to UVB 100 mJ/cm2 induced rapid apoptosis concurrent with activation of JNK and mitochondrial cytochrome c release leading to procaspase-3 activation. Late into the UVB-induced apoptosis, a caspase-mediated cleavage of Bid was observed. Caspase inhibitors N-Benzylocarbonyl-Val-Asp-fluoromethyl ketone and N-Acetyl-Asp-Glu-Val-Asp-aldehyde inhibited the UVB-induced apoptosis without preventing the release of cytochrome c and JNK activation. The inhibition of JNK MAPK prevented UVB-induced apoptosis, concomitant with inhibition in cytochrome c release and procaspase-3 activation. However, it had no effect on procaspase-8 activation. These results indicate that activation of JNK MAPK upstream of caspases might play an important role in the apoptotic process of macrophages exposed to UVB irradiation.  相似文献   

12.
In this study we show that overexpression of Bcl-2 in PC60R1R2 cells reveals a caspase-dependent mechanism of cytochrome c release following photodynamic therapy (PDT) with hypericin. Bcl-2 overexpression remarkably delayed cytochrome c release, procaspase-3 activation and poly(adenosine diphosphate-ribose)polymerase cleavage during PDT-induced apoptosis while it did not protect against PDT-induced necrosis. PDT-treated cells showed a reduction in the mitochondrial membrane potential which occurred with similar kinetics in PC60R1R2 and PC60R1R2/Bcl-2 cells, and was affected neither by the permeability transition pore inhibitor cyclosporin A nor by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Hypericin-induced mitochondrial depolarization coincided with cytochrome c release in PC60R1R2 cells while it precedes massive cytochrome c efflux in PC60R1R2/Bcl-2 cells. Preincubation of PC60R1R2 cells with zVAD-fmk or cyclosporin A did not prevent the mitochondrial efflux of cytochrome c, and caspase inhibition only partially protected the cells from PDT-induced apoptosis. In contrast, in PC60R1R2/Bcl-2 cells cytochrome c release and apoptosis were suppressed by addition of zVAD-fmk or cyclosporin A. These observations suggest that the progression of the PDT-induced apoptotic process in Bcl-2-overexpressing cells involves a caspase-dependent feed-forward amplification loop for the release of cytochrome c.  相似文献   

13.
Recently, we synthesized 9-hydroxypheophorbide alpha (9-HPbD), a new chlorophyll-derived photosensitizer. The photo-treatment of MCF-7 human breast cancer cells with 20 kJ/m2 of red light after 5 microM 9-HPbD pretreatment induced cell death, showed typical apoptotic features, i.e., chromatin condensation, phosphatidyl serine externalization, membrane blebbing, and apoptotic bodies with an intact plasma membrane structure. To elucidate the mechanism of 9-HPbD-induced apoptosis, various mediators of the apoptosis were investigated. Release of cytochrome c from mitochondria into the cytosol was distinct 9 h after irradiation, while the levels of most apoptosis-related molecules such as Fas, FasL, Bcl-2, Bax and p53 were unchanged. Furthermore, caspase-9 activated by released cytochrome c was not significantly activated after 9-HPbD-photosensitization. On the other hand, stress-activated protein kinases such as p38 and c-Jun N-terminal kinase (JNK) were activated 1 h after irradiation. Blocking of JNK signaling by transfecting with the dominant negative from of the JNK gene significantly reduced 9-HPbD-induced cell death. Our data show that photosensitization with the new photosensitizer 9-HPbD could induce the apoptotic death of MCF-7 breast cancer cell and that this death is mediated by stress-activated signal through JNK.  相似文献   

14.
Cervical cancer is known to be highly associated with viral oncogene E6 and E7 of human papilloma virus. Down-regulation of oncogene expression by antisense-based gene therapy has been extensively studied. To investigate the effect of HPV 16 E6 antisense nucleic acid (AS) on cervical cancer cells, human cervical cancer cell lines, CaSki and SiHa cells harboring HPV 16 genome were transfected with plasmid containing E6(AS). The decreased viability and the apoptotic morphology were observed in E6(AS)-transfected cervical cancer cell lines. By 6 h after transfection, inhibition of E6 splicing, rapid upregulations of p53 and a p53-responsive protein, GADD45, were displayed in E6(AS)-transfected CaSki cells. Furthermore, E6(AS) induced loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into the cytoplasm, and subsequent activation of caspase-9 and caspase-3. These results indicate that HPV 16 E6(AS) induces apoptosis in CaSki cells via upregulation of p53 and release of cytochrome c into cytoplasm, consequently activating procaspase-9 and procaspase-3.  相似文献   

15.
G protein-coupled receptors (GPCRs) are core switches connecting excellular survival or death signals with cellular signaling pathways in a context-dependent manner. Opsin 3 (OPN3) belongs to the GPCR superfamily. However, whether OPN3 can control the survival or death of human melanocytes is not known. Here, we try to investigate the inherent function of OPN3 on the survival of melanocytes. Our results demonstrate that OPN3 knockdown by RNAi-OPN3 in human epidermal melanocytes leads to cell apoptosis. The downregulation of OPN3 markedly reduces intracellular calcium levels and decreases phosphorylation of BAD. Attenuated BAD phosphorylation and elevated BAD protein level alter mitochondria membrane permeability, which trigger activation of BAX and inhibition of BCL-2 and raf-1. Activated BAX results in the release of cytochrome c and the loss of mitochondrial membrane potential. Cytochrome c complexes associate with caspase 9, forming a postmitochondrial apoptosome that activate effector caspases including caspase 3 and caspase 7. The release of apoptotic molecules eventually promotes the occurrence of apoptosis. In conclusion, we hereby are the first to prove that OPN3 is a key signal responsible for cell survival through a calcium-dependent G protein-coupled signaling and mitochondrial pathway.  相似文献   

16.
When the initial effect of photodynamic therapy (PDT) involves mitochondrial photodamage, an early effect is loss of the mitochondrial membrane potential (ΔΨm). Using murine hepatoma 1c1c7 cells and a photosensitizing agent known to target mitochondria, we examined loss of ΔΨm, initiation of apoptosis and loss of viability as a function of time and light dose. There was a correlation between loss of viability and the rapid disappearance of ΔΨm, as detected by the potential‐sensitive probe Mitotracker Orange (MTO). Loss of ΔΨm was, however, reversible even with a substantial loss of viability. Unless there was a supralethal level of photodamage, 1c1c7 cells recovered their mitochondrial membrane potential, even if the cell population was on the pathway to apoptosis and cell death. These results indicate that when mitochondria are the initial PDT target, a qualitative estimate of photokilling can be provided by assessing the initial loss of ΔΨm.  相似文献   

17.
Cryptomeria japonica D. Don (C. japonica) has been used in traditional medicines from Asia for a variety of indications, including liver ailments, and an antitussive, and for its antiulcer activities. We examined the cell viability and apoptosis of KB cells treated with C. japonica essential oil at several concentrations for 12 h by MTT assay, Hoechst-33258 dye staining, DNA fragmentation, flow cytometry (cell cycle), and Western blotting for mitochondria stress, activation of caspases, and poly (ADP-ribose) polymerase. The essential oil induced the apoptosis of KB cells in a dose-dependent manner, which was verified by DNA fragmentation, appearance of apoptotic bodies, and the sub-G1 ratio. The essential oil also induced rapid and transient caspase-3 activity and cleavage of PARP of the KB cells. Treating the cells with the oil also caused changes in the mitochondrial level of the Bcl-2 family proteins such as Bcl-2 and Bax, thereby inducing the release of cytochrome c into the cytosol. The essential oil of C. japonica may have potential as a cancer chemopreventive and therapeutic agent.  相似文献   

18.
To determine the initial photodamage sites of Foscan-mediated photodynamic treatment, we evaluated the enzymatic activities in selected organelles immediately after light exposure of MCF-7 cells. The measurements indicated that the enzymes located in the Golgi apparatus (uridine 5'-diphosphate galactosyl transferase) and in the endoplasmic reticulum (ER) (nicotinamide adenine dinucleotide [reduced] [NADH] cytochrome c [cyt c] reductase) are inactivated by the treatment, whereas mitochondrial marker enzymes (cyt c oxidase and dehydrogenases) were unaffected. This indicates that the ER and the Golgi apparatus are the primary intracellular sites damaged by Foscan-mediated PDT in MCF-7 cells. We further investigated whether the specific mitochondria events could be associated with Foscan photoinduced cell death. The dose response profiles of mitochondrial depolarization and cytochrome c release immediately after Foscan-based PDT were very different from that of overall cell death. By 24 h post-PDT the fluence dependency was strikingly similar for both mitochondrial alterations and cell death. Therefore, although mitochondria are not directly affected by the treatment, they can be strongly implicated in Foscan-mediated MCF-7 cell death by late and indirect mechanism.  相似文献   

19.
Photodynamic therapy (PDT), a cancer treatment using a photosensitizer and visible light, has been shown to induce apoptosis or necrosis. We report here that Purpurin-18 (Pu18) in combination with light induces rapid apoptotic cell death in the human leukemia cell line (HL60) at low doses and necrosis at higher concentrations. Cells treated with Pu18 and light under apoptotic conditions exhibited DNA laddering and an increase in both cellular content of subdiploid DNA and externalization of phosphatidylserine (PS), indicating DNA fragmentation and loss of membrane phospholipid asymmetry. In the absence of light activation, Pu18 at nanomolar concentrations had no detectable cytotoxic effect. Caspase-3 activity was increased even after 1 h from treatment with low doses of Pu18 and light. The PS exposure and nuclear features of apoptosis were prevented by treatment of cells before illumination with caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK). Conversely, the caspase-1 inhibitor, acetyl-Tyr-Val-Ala-Asp-aldehyde (Ac-YVAD-CHO) failed to suppress the apoptosis. No protective effect of the three caspase inhibitors was observed when the cells were exposed to necrotic concentrations of Pu18 and light. Our results show that caspase-3, but not caspase-1, is involved in the signaling of apoptotic events in PDT with Pu18-induced apoptosis of HL60 cells. Moreover, both the time course of PS exposure and the effect of caspase inhibitors on it indicate that it is regulated in the same manner as DNA fragmentation.  相似文献   

20.
As lanthanide-doped sodium yttrium flouride(NaYF_4)nanoparticles have great potential inbiomedical applications,their biosafety is important and has attracted significant attention.In the present work,three different sized NaYF_4:Eu~(3+)nanoparticles have been prepared.Liver BRL 3 A cell was used as a cell model to evaluate their biological effects.Cell viability and apoptosis assays were used to confirm the cytotoxicity induced by NaYF_4:Eu~(3+)NPs.Apart from the elevated malondialdehyde(MDA),the decrease of superoxide dismutase(SOD),glutathione peroxidase(GSH-PX)and catalase(CAT)activity indicated reactive oxygen species(ROS)generation,which were associated with oxidative damage.The decrease of mitochondrial membrane potential(MMP)value demonstrated the occurrence of mitochondria damage.Then,release of cytochrome c from mitochondria and activation of caspase-3 confirmed that NaYF_4:Eu~(3+)NPs induced apoptosis was mitochondria damage-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号