首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

2.
In this paper, a linear size-dependent Timoshenko beam model based on the consistent couple stress theory is developed to capture the size effects. The extended Hamilton's principle is utilized to obtain the governing differential equations and boundary conditions. The general form of boundary conditions and the concentrated loading are employed to determine the exact static/dynamic solution of the beam. Utilizing this solution for the beam's deformation and rotation, the exact shape functions of the consistent couple stress theory (C-CST) is extracted, which leads to the stiffness and mass matrices of a two-node C-CST finite element beam. Due to the complexity and high computational cost of using the exact solution's shape functions, in addition to the Ritz approximate solution, a two primary variable finite element model of C-CST is proposed, and the corresponding general deformation and rotation fields, shape functions, mass and stiffness matrices are calculated. The C-CST is validated by comparing the prediction of different beam models for a benchmark problem. For the fully and partially clamped cantilever, and free-free beams, the size dependency of the formulations is investigated. The static solutions of the classical and consistent couple stress Timoshenko beam models are compared, and a criterion for selecting the proper model is proposed. For a wide range of material properties, the relation between the beam length and length scale parameter is derived. It is shown that the validity domain of the consistent couple stress Timoshenko model barely depends on the beam's constituent material.  相似文献   

3.
The scaled boundary finite element method (SBFEM) is a semi-analytical method in which only the boundary is discretized. The results on the boundary are scaled into the domain with respect to a scaling center which must be “visible” from the whole boundary. For beam-like problems the scaling center can be selected at infinity and only the cross-section is discretized. Two new elements for thin-walled beams have been developed on the basis of the first order shear deformation theory. The beam sections are considered to be multilayered laminate plates with arbitrary layup. The arbitrary cross-section is discretized with beam elements of Timoshenko type. Using the virtual work principle gives the SBFEM equation, which is a system of differential equations of a gyroscopic type. The solution is calculated using the matrix exponential function. The elements have been tested and compared with a finite element model and they give good results. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper,the boundary stabiligstion of tbe Timoshenko equation of a nononiform beam,with clarrmped boundary condition at one end and witb bending moment and shear force controls at the other end, is considered. It is proved that the system is exponentially stahilizable when the bending moment and shear force controls are simultaneously appiied. The frequency domain method and the multiplier technique are used.  相似文献   

5.
In this paper,the boundary stabilization of the Timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with bending moment and shear force controls at the other end,is considered.It is proved that the system is exponentially stabilizable when the bending moment and shear force controls are simultaneously applied.The frequency domain method and the multiplier technique are used.  相似文献   

6.
The free bending vibration of rotating axially functionally graded (FG) Timoshenko tapered beams (TTB) with different boundary conditions are studied using Differential Transformation method (DTM) and differential quadrature element method of lowest order (DQEL). These two methods are capable of modelling any beam whose cross sectional area, moment of inertia and material properties vary along the beam. In order to verify the competency of these two methods, natural frequencies are obtained for problems by considering the effect of material non-homogeneity, taper ratio, shear deformation parameter, rotating speed parameter, hub radius and tip mass. The results are tabulated and compared with the previous published results wherever available.  相似文献   

7.
A continuous Timoshenko linear beam model immersed in a three-dimensional space is introduced to study the static and dynamic behavior of tower buildings. A schematization of the building as a periodic system with rigid floors connected by deformable elements (columns and shear walls) is considered. The rigid floors are endowed with six degrees of freedom (three displacements and three rotations). The constitutive equations of the equivalent beam (coarse model) are identified from a discrete model of the three-dimensional frame (fine model) via a homogenization procedure. A complete linear constitutive law is obtained, with axial force coupled with bending and shear force coupled with torsion. The first aim is to investigate the relative importance of the macro-shear and macro-bending contributions to the deformation of the building. Then, the ability of the coarse model to reproduce the local stress distribution of the fine model is checked. Finally, the representativeness of the coarse model for the detection of the natural frequencies of the fine model is analyzed.  相似文献   

8.
A finite element model for linear static and free vibration analysis of composite cylindrical panels with composite stiffeners is presented. The proposed model is based on a cylindrical shell finite element, which uses a first-roder shear deformation theory. The stiffeners are curved beam elements based on Timoshenko and Saint-Venant assumptions for bending and torsion respectively. The two elements are developed in a cylindrical coordinate system and their stiffness matrices result from a hybrid-mixed formulation where the element assumed stress field is such that exact equilibrium equations are satisfied. The elements are free of membrane and shear locking with correct satisfaction of rigid body motions. Several examples dealing with stiffened isotropic and laminated plates and shells with eccentric as well as concentric stiffeners are analyzed showing the validity of the models.  相似文献   

9.
A modified couple stress theory and a meshless method is used to study the bending of simply supported micro isotropic plates according to the first-order shear deformation plate theory, also known as the Mindlin plate theory. The modified couples tress theory involves only one length scale parameter and thus simplifies the theory, since experimentally it is easier to determine the single scale parameter. The equations governing bending of the first-order shear deformation theory are implemented using a meshless method based on collocation with radial basis functions. The numerical method is easy to implement, and it provides accurate results that are in excellent agreement with the analytical solutions.  相似文献   

10.
功能梯度材料Timoshenko梁的热过屈曲分析   总被引:3,自引:0,他引:3  
研究了功能梯度材料Timoshenko梁在横向非均匀升温下的热过屈曲.在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了功能梯度Timoshenko梁在热-机械载荷作用下的几何非线性控制方程,将问题归结为含有7个基本未知函数的非线性常微分方程边值问题A·D2其中,假设功能梯度梁的材料性质为沿厚度方向按照幂函数连续变化的形式.然后采用打靶法数值求解所得强非线性边值问题,获得了横向非均匀升温场内两端固定Timoshenko梁的静态非线性热屈曲和热过屈曲数值解.绘出了梁的变形随温度载荷及材料梯度参数变化的特性曲线,分析和讨论了温度载荷及材料的梯度性质参数对梁变形的影响.结果表明,由于材料在横向的非均匀性,均匀升温时的梁中存在拉-弯耦合变形.  相似文献   

11.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

12.
An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1) a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.  相似文献   

13.
考虑非局部剪切效应的碳纳米管弯曲特性研究   总被引:2,自引:2,他引:0  
基于Hamilton(哈密顿)变分原理和非局部连续介质弹性理论,建立了新型非局部Timoshenko(铁木辛柯)梁模型(ANT),推导了碳纳米管(CNT)的ANT弯曲平衡方程以及两端简支梁、悬臂梁和简支 固定梁的边界条件表达式,分析了剪切变形效应和非局部微观尺度效应对碳纳米管弯曲特性的影响.数值计算结果显示,碳纳米管的弯曲刚度随着小尺度效应的增强而升高.其次,这种小尺度效应对自由端受集中力的悬臂梁碳纳米管有明显作用,其刚度变化规律和其它约束条件的碳纳米管一样,这一点是ANT模型区别于普通非局部纳米梁模型的主要特点.经分子动力学模拟验证,ANT模型是合理分析碳纳米管力学特性的有效方法.  相似文献   

14.
A method based on Green's functions is proposed for the analysis of the steady-state dynamic response of bending-torsion coupled Timoshenko beam subjected to distributed and/or concentrated loadings. Damping effects on the bending and torsional directions are taken into account in the vibration equations. The elastic boundary conditions with bending-torsion coupling and damping effects are derived and the classical boundary conditions can be obtained by setting the values of specific stiffness parameters of the artificial springs. The Laplace transform technology is employed to work out the Green's functions for the beam with arbitrary boundary conditions. The Green's functions are obtained for the beam subject to external lateral force and external torque, respectively. Coupling effects between bending and torsional vibrations of the beam can be studied conveniently through these analytical Green's functions. The direct expressions of the steady-state responses with various loadings are obtained by using the superposition principle. The present Green's functions for the Timoshenko beam can be reduced to those for Euler–Bernoulli beam by setting the values of shear rigidity and rotational inertia. In order to demonstrate the validity of the Green's functions proposed, results obtained for special cases are given for a comparison with those given in the literature and they agree with each other exactly. The influences of external loading frequency and eccentricity on Green's functions of bending-torsion coupled Timoshenko beam are investigated in terms of the numerical results for both simply supported and cantilever beams. Moreover, the symmetric property of the Green's functions and the damping effects on the amplitude of Green's functions of the beam are discussed particularly.  相似文献   

15.
16.
基于Euler-Bernoulli梁理论的经典纤维模型忽略了剪切变形给截面带来的影响,为了得到更加精确的梁单元模型,该文基于考虑剪切效应的纤维梁单元,根据Timoshenko梁理论,推导了该纤维梁单元的刚度矩阵,并结合弹塑性增量理论,同时考虑了几何非线性和材料非线性的双重影响,建立了压弯剪复杂应力状态下结构非线性有限元...  相似文献   

17.
基于修正偶应力理论,将Timoshenko微梁的应力、偶应力、应变、曲率等基本变量,描述为位移分量偏导数的表达式.根据最小势能原理,推导了决定Timoshenko微梁位移场的位移场控微分方程.利用级数法求解了任意载荷作用下Timoshenko简支微梁的位移场控微分方程,得到了反映尺寸效应的挠度、转角及应力的偶应力理论解.通过对承受余弦分布载荷Timoshenko简支微梁的数值计算,研究了Timoshenko微梁的挠度、转角和应力的尺寸效应,分析了Poisson比对Timoshenko微梁力学行为及其尺寸效应的影响.结果表明:当截面高度与材料特征长度的比值小于5时,Timoshenko微梁的刚度和强度均随着截面高度的减小而显著提高,表现出明显的尺寸效应;当截面高度与材料特征长度的比值大于10时,Timoshenko微梁的刚度与强度均趋于稳定,尺寸效应可以忽略;材料Poisson比是影响Timoshenko微梁力学行为及尺寸效应的重要因素,Poisson比越大Timoshenko微梁刚度和强度的尺寸效应越显著.该文建立的Timoshenko微梁模型,能有效描述Timoshenko微梁的力学行为及尺寸效应,可为微电子机械系统(MEMS)中的微结构设计与分析提供理论基础和技术参考.  相似文献   

18.
Rainer Glüge 《PAMM》2013,13(1):251-252
We discuss generalized boundary conditions for representative volume elements (RVE), which include the classical boundary conditions as special cases. From the generalization, stochastic boundary conditions are derived. These allows to adjust the the stiffness of the boundary conditions smoothly between the extremal cases of homogeneous strain and homogeneous stress boundary conditions. We found that it needs to be distinguished between the resistance of the boundary conditions against homogeneous and inhomogeneous RVE deformation. The stochastic BC can combine the moderate stiffness of the well known periodic boundary conditions with the high resistance against localization of the homogeneous strain boundary conditions. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Various phenomena occurring on the macrosscale result from physical and mechanical behaviour on the microscale [1]. For the mechanical modeling and simulation of the heterogeneous composition of fiber structured material, in addition to the material properties the contact between the fibers has to be taken into account. The material behaviour is strongly influenced by the material properties of the fiber, but also by the geometrical structure. Periodically arranged fibers like woven, knitted or plaited fabrics and randomly oriented ones like fleece can be distinguished in their arrangement. In consideration of different lengthscales the problem involves, it is necessary to introduce a multiscale approach based on the concept of a representative volume element (RVE). The macro-micro scale transition requires a method to impose the deformation gradient on the RVE by suited boundary conditions. The reversing scale transition, based on the HILL-MANDEL condition, requires the equality of the macroscopic average of the variation of work on the RVE and the local variation of the work on the macroscale [2]. For the micro-macro transition the averaged stresses have to be extracted by a homogenization scheme. From these results an effective material law can be derived. Beside the theoretical aspects, we present the stress-strain relation for RVE-models and different boundary conditions. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
An analytical approach for static bending and buckling analyses of curved nanobeams using the differential constitutive law, consequent to Eringen’s strain-driven integral model coupled with a higher-order shear deformation accounting for through thickness stretching is presented. The formulation is general in the sense that it can be deduced to examine the influence of different structural theories, for static and dynamic analyses of curved nanobeams. The governing equations derived using Hamiltons principle are solved in conjunction with Naviers solutions. The formulation is validated considering problems for which solutions are available. A comparative study is made here by various theories obtained through the formulation. The effects various structural parameters such as thickness ratio, beam length, rise of the curved beam, and nonlocal scale parameter are brought out on bending and stability characteristics of curved nanobeams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号