首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress state transducers (SSTs) were used to determine the orientation of the major principal stress, σ1, in soil beneath the centeline of an 18.4R38 radial-ply R-1 drive tire operated at 10% slip. Two soils, a sandy loam and a clay loam, were each prepared twice to obtain two density profiles. One profile of each soil had a hardpan and the soil above the hardpan was loose. The soil in the second profile was loosely tilled. The stress state was determined at a depth of 358 mm in the sandy loam and 241 mm in the clay loam soil. The tire was operated at two dynamic loads (13.2 and 25.3 kN), each at two levels of inflation pressure (41 and 124 kPa). When the orientation of σ1 was determined directly beneath the axle, the mean angles of tilt in the direction of travel ranged from 6 to 23 degrees from vertical. Inflation pressure did not significantly affect the angle when the dynamic load was 13.2 kN in the sandy loam soil, and neither inflation pressure nor dynamic load significantly affected the angle in the clay loam soil. When the dynamic load was 25.3 kN in the sandy loam soil, the orientation of the major principal stress determined directly beneath the axle was tilted significantly more in the direction of travel when the tire was at 41 kPa inflation pressure than when at 124 kPa. These changes in stress orientation demonstrate the importance of measuring the complete stress state in soil, rather than stresses along only one line of action. The changing orientation of σ1 as the tire passes over the soil indicates the soil undergoes kneading and supports future investigation of the contribution of changes in stress orientation to soil compaction.  相似文献   

2.
Soil strain transducers were used to determine strain in an initially loose sandy loam soil in a soil bin beneath the centerline of an 18.4R38 radial-ply tractor drive tire operating at 10% travel reduction. The initial depth of the midpoints of the strain transducers beneath the undisturbed soil surface was 220 mm. Strain was determined in the vertical, longitudinal, and lateral directions. Initial lengths of strain transducers were approximately 118 mm for the longitudinal and lateral transducers and 136 mm for the vertical transducer. The tire dynamic load was 25 kN and the inflation pressure was 110 kPa, which was a recommended pressure corresponding to the load. In each of four replications, as the tire approached and passed over the strain transducers, the soil first compressed in the longitudinal direction, then elongated, and then compressed again. The soil was compressed in the vertical direction and elongated in the lateral direction. Mean natural strains of the soil following the tire pass were −0.200 in the vertical direction, +0.127 in the lateral direction, and −0.027 in the longitudinal direction. The mean final volumetric natural strain from the strain transducer data was −0.099, which was only 35% of the mean change in natural volumetric strain calculated from soil core samples, −0.286. This difference likely resulted from the greater length of the lateral strain transducer relative to the 69 mm lateral dimension of the soil cores. The strain transducer data indicated the occurrence of plastic flow in the soil during one of the four replications. These results indicate the complex nature of soil movement beneath a tire during traffic and emphasize a shortcoming of soil bulk density data because soil deformation can occur during plastic flow while soil bulk density remains constant.  相似文献   

3.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

4.
A Trelleborg Twin 421 Mark II 600/55-26.5 steel-reinforced bias-ply forwarder drive tire at inflation pressures of 100 and 240 kPa and dynamic loads of 23.9 and 40 kN was used at 5% travel reduction on a firm clay soil. Effects of dynamic load and inflation pressure on soil–tire contact pressures were determined using six pressure transducers mounted on the tire tread. Three were mounted on the face of a lug and three at corresponding locations on the undertread. Contact angles increased with decreases in inflation pressure and increases in dynamic load. Contact pressures on a lug at the edge of the tire increased as dynamic load increased. Mean and peak pressures on the undertread generally were less than those on a lug. The peak pressures on a lug occurred forward of the axle in nearly all combinations of dynamic load, inflation pressure, and pressure sensor location, and peak pressures on the undertread occurred to the rear of the axle in most of the combinations. Ratios of the peak contact pressure to the inflation pressure ranged from 0 at the edge of the undertread for three combinations of dynamic load and inflation pressure to 8.39 for the pressure sensor on a lug, near the tire centerline, when the tire was underinflated. At constant dynamic load, net traction and tractive efficiency decreased as inflation pressure increased.  相似文献   

5.
The objective of this study was to evaluate the effects of agricultural tire characteristics on variations of wheel load and vibrations transmitted from the ground to the tractor rear axle. The experiments were conducted on an asphalt road and a sandy loam field using a two-wheel-drive self-propelled farm tractor at different combinations of tractor forward speeds of approximately 0.6, 1.6 and 2.6 m/s, and tire inflation pressures of 330 and 80 kPa. During experiments, the vertical wheel load of the left and right rear wheels, and the roll, bounce and pitch accelerations of the rear axle center were measured using strain-gage-based transducers and a triaxial accelerometer. The wavelet and Fourier analyses were applied to measured data in order to investigate the effects of self-excitations due to non-uniformity and lugs of tires on the wheel-load fluctuation and rear axle vibrations. Values for the root-mean-square (RMS) wheel loads and accelerations were not strictly proportional and inversely proportional to the forward speed and tire pressure respectively. The time histories and frequency compositions of synthesized data have shown that tire non-uniformity and tire lugs significantly excited the wheel load and accelerations at their natural frequencies and harmonics. These effects were strongly affected by the forward speed, tire pressure and ground deformation.  相似文献   

6.
In this study, the vertical soil reaction acting on a driven wheel was measured by strain gages bonded to the left rear axle of a 2WD tractor driven under steady-state condition on different soil surfaces, tractor operations, and combinations of static wheel load and tire inflation pressure. In addition, the measurements of radial and tangential stresses on the soil–tire interface were made simultaneously at lug’s face and leading side near the centerline of the left rear tire using spot pressure sensors. The experimental results indicate that the proposed method of vertical soil reaction measurement is capable of monitoring the real-time vertical wheel load of a moving vehicle and provides a tool for further studies on vehicle dynamics and dynamic wheel–soil interaction. Furthermore, the measured distributions of soil stresses under tractor tire could provide more real insight into the soil–wheel interactions.  相似文献   

7.
This paper reports about measurements of the contact area of agricultuural tires in a soil bin. Four tires of the dimensions 12.5/80-18, 13.6–28, 16.9–34 and 16.9–26 were tested on a soft sandy loam. Because the existing models for predicting the footprint are complicated, a simplified model has been established, yielding good results. Measured different contact areas of all four tires are nearly constant related to wheel load except for a small increase at higher loads. Using rated loads and applying the appropriate inflation pressure, the ground pressure of a group of similar tires in loose sandy loam is independent of the tire dimensions. Measured soil compaction under at tire a various wheel loads is compared with results obtained by a mathematical model.  相似文献   

8.
Instrumentation to collect ISO2631 ride data was installed on a CaseIH 8950 tractor equipped with a central tire inflation system (CTIS). Data were collected at two speeds on three courses representing degraded secondary roads, moderately rough fields, and the toughest of farming conditions. Reductions in tire pressures available with central tire inflation resulted in greater tire deflections and, consequently, a smoother ride. The CTIS improved the ride of the vehicle by 99% over properly inflated tires on average, and by 177% when not in resonance.  相似文献   

9.
The tractive performance of an 18.4R38 radial-ply tractor tire with increased flexibility in the tread area was compared to that of a standard tread design. Normal soil-tire interface stresses were measured at four locations on the lug surfaces of both tires operating on Decatur clay loam and Norfolk sandy loam soils. There was a tendency for the increased flexibility in the tread area to provide a higher net traction ratio at the same tractive efficiency as the standard tread design, especially on Decatur clay loam soil. The more flexible tread design reduced the magnitude of peak normal contact stresses across the tire width, which may have implications for reducing soil compaction without compromising tractive performance. The more flexible tire reduced the average normal contact stress by approximately 15% in the sandy loam soil and 23% in the clay loam soil for the range of operating conditions investigated.  相似文献   

10.
Theoretical and applied research has shown that the pressure at a point in the subsurface soil is a function of both the surface unit pressure and the extent of the area over which it is applied (total load). Thirty years ago, most of the soil compaction from vehicle traffic was in the plow layer and was removed by normal cultural practices. As equipment has increased in size and mass, machine designers have increased tire sizes to keep the soil surface unit pressure relatively constant. However, the increase in total axle loads is believed to have caused an increase in compaction at any given depth in the soil profile, resulting in significant compaction in the subsoil.Two tires of different sizes, a standard agricultural tire and a flotation tire were used to support equal loads. Soil pressures were measured at three depths in the soil profile directly beneath each of the tires. Two soils were used and each was prepared first in a uniform density profile, and then they were prepared with a simulated traffic pan (layer of higher density) at a depth of approximately 30 cm.Results showed that the presence of a traffic pan in the soil profile caused higher soil pressures above the pan and lower pressures below it than was the case for a uniform soil profile. The soil contact surface of the flotation tire was approximately 22% greater than the agricultural tire. The greater contact surface did reduce soil pressures at the soil surface, of course, but the total axle load was still the dominant factor in the 18–50 cm-depth range used in this study.  相似文献   

11.
A field experiment was conducted on alluvial soil with sandy loam texture, in a complete randomized design, to determine the compaction of sub-soil layers due to different passes of a test tractor with varying normal loads. The selected normal loads were 4.40, 6.40 and 8.40 kN and the number of passes 1, 6, 11 and 16. The bulk density and cone penetration resistance were measured to determine the compaction at 10 equal intervals of 5 cm down the surface. The observations were used to validate a simulation model on sub-soil compaction due to multiple passes of tractor in controlled conditions. The bulk density and penetration resistance in 0–15 cm depth zone continuously increased up to 16 passes of the test tractor, and more at higher normal loads. The compaction was less in different sub-soil layers at lower levels of loads. The impact of higher loads and larger number of passes on compaction was more effective in the soil depth less than 30 cm; for example the normal load of 8.40 kN caused the maximum bulk density of 1.53 Mg/m3 after 16 passes. In 30–45 cm depth layer also, the penetration resistance increased with the increase in loads and number of passes but to a lesser extent which further decreased in the subsoil layers below 45 cm. Overall, the study variables viz. normal load on tractor and number of passes influenced the bulk density and soil penetration resistance in soil depth in the range of 0–45 cm at 1% level of significance. However, beyond 45 cm soil depth, the influence was not significant. The R2 calculated from observed and predicted values with respect to regression equations for bulk density and penetration resistance were 0.7038 and 0.76, respectively.  相似文献   

12.
Experiments were conducted on a Eudora silt loam to determine the effect of tracked and wheeled tractor traffic on cone penetration resistance and soil bulk density at three different soil-water content levels. Treatment plots were ripped to a depth of 0.45 m and irrigated 5 days prior to the experiment. Significant differences in penetration resistance and bulk density were observed between the treatments within the plowing depth (0.30 m). After the tractor passes, the average penetration resistance recorded was about 7.5% higher and the soil bulk density was about 3% higher in the wheel treatment plots. However, at the soil-water content level close to Proctor optimum (15% w/w), no significant difference was observed in the average penetration resistance of the two treatments.  相似文献   

13.
Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s ratio and Drucker–Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory – Auburn University (NSDL-AU) soil compaction model. The stress–strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair (‘slave-master’) algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m−3 and (2) 1.71 Mg m−3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU ‘virgin’ model.  相似文献   

14.
Normal and tangential stress vectors were measured at the soil-tire interface of a pneumatic tractor tire on firm and soft soils. Stress magnitudes were determined with a transducer which was designed to measure both normal and tangential stresses. The orientation of the transducer was determined using a 3-dimensional, sonic digitizing system which was mounted inside the air cavity of the tire. Data are presented from tests conducted at zero input torque, zero net traction, and 0.15 net traction ratio which show the effects of inflation pressure, dynamic load, and soil conditions on the stress vectors.  相似文献   

15.
Enhancement of the potential root growth volume is the main objective of farmers when they establish a conventional tillage system. Therefore, the main function of primary tillage is to increase soil’s structural macroporosity. In spite of this, during secondary tillage operations on these freshly tilled soils, the traffic on seedbeds causes significant increases in soil compaction. The aim of this paper was to quantify soil compaction induced by tractor traffic on a recently tilled non consolidated soil, to match ballast and tyre size on the tractors used during secondary tillage. The work was performed in the South of the Rolling Pampa region, Argentina. Secondary tillage traffic was simulated by one pass of a conventional 2WD tractor, using four configurations of bias-ply rear tyres: 18.4×34, 23.1×30, 18.4×38 and 18.4×38 duals, two ballast conditions were used in each configuration. Soil bulk density and cone index in a 0 to 600 mm profile were measured before and after traffic. Topsoil compaction increased as did ground pressure. Subsoil compaction increased as total axle load increased and was independent from ground pressure. At heavy conditions, topsoil levels always showed higher cone index values. From 150 to 450 mm depth, the same tendency was found, but with smaller increases in the cone index parameter, 22 to 48%, averaging 35%. Finally, at the deepest layer considered, 600 mm, differential increases due to the axle load are great enough as to be considered similar to those found in the upper horizon, 36 to 64%, averaging 55%. On the other hand, bulk density tended to be less responsive than cone index to the traffic treatments. Topsoil compaction can be reduced by matching conventional bias-ply tyres with an optimized axle weight.  相似文献   

16.
冰面上轮胎摩擦牵引力的实验研究   总被引:3,自引:2,他引:1  
研制开发了测试冰雪面轮胎力学特性的试验装置,该装置具有可作往复运动的平台冰槽。在不同冰基体温度下,分析了轮胎摩擦引力受侧偏角,载荷和轮胎充气压力的影响,从试验角度论证了轮胎中央充放气系统对改善冬季轮胎牵引性能的作用,该装置的建立将有利于轮胎新结构和新材料的开发,并起到完善现有轮胎力学模型的作用。  相似文献   

17.
Dimensional variations of pneumatic tires influence off-road locomotion and more particularly their aptitude for the transmission of high propulsive torques to the tire-soil contact area.Height variation of the tire when load increases is linear and allows a classification of the casings by means of the angular coefficients for the straight lines expression this relationship.Variation in the level where the enlarging of the torus is maximum is directly connected with the applied load and inversely proportional to the inflation pressure. Ply rating and inflation pressure define a stiffness coefficient for a tire, while the ratio of height to width under load specifies a deformation coefficient, a squash rate and a flattening rate. These three parameters characterize the elasticity of the tire and so are connected to the effective tire-soil contact areas.Compressive effects of the vertical stress as well as the transmitted torques are in relation with tire deformability. The study points to the need for better specification of the parameters for the choice, or for the definition of the desired characteristics for manufacturing, of tires.Experiments already done on superficial compaction effects concluded with a new type of cross section for the tire called the camel shoe.  相似文献   

18.
The main objective of the following presentation is to examine the possibility of predicting agricultural tire footprint parameters under different operational conditions. The experimental part of the research involved the operation of two agricultural transport tires on two soils, under variations of tire load, inflation pressures and soil moisture contents. Results obtained show that tire footprint parameters, such as contact area, length, width and sinkage, can be reliably predicted using multifactorial linear and total regressions, within the range of recommended tire loads, inflation pressures and soil moisture contents around the plastic limit.  相似文献   

19.
Variable load test data were used to evaluate the applicability of an existing forestry tire traction model for a new forestry tire and a worn tire of the same size with and without tire chains in a range of soil conditions. The clay and sandy soils ranged in moisture content from 17 to 28%. Soil bulk density varied between 1.1 and 1.4g cm−3 with cone index values between 297 and 1418 kPa for a depth of 140 mm. Two of the clay soils had surface cover or vegetation, the other clay soil and the sandy soil had no surface cover. Tractive performance data were collected in soil bins using a single tire test vehicle with the tire running at 20% slip. A non-linear curve fitting technique was used to optimize the model by fitting it to collected input torque data by modifying the coefficients of the traction model equations. Generally, this procedure resulted in improved prediction of input torque, gross traction ratio and net traction ratio. The predicted tractive performance using the optimized coefficients showed that the model worked reasonably well on bare, uniform soils with the new tire. The model was flexible and could be modified to predict tractive performance of the worn tire with and without chains on the bare homogeneous soils. The model was not adequate for predicting tractive performance on less uniform soils with a surface cover for any of the tire treatments.  相似文献   

20.
This study was to investigate the effect of inflation pressure on the tractive performance of bias-ply tires for agricultural tractors. Traction tests were conducted at velocities of 3, 4, and 5.5 km h−1 under four different surface conditions using a 13.6–28 6PR bias-ply tire as driving the wheel of the test tractor. When the inflation pressure was reduced from 250 to 40 kPa by a decrement of either 30 or 50 kPa depending upon the test surfaces, some of the test results showed that the traction coefficient and tractive efficiency were increased maximally by 14 and 6%, respectively, at 20% slip. However, such improvements in traction were not statistically consistent enough to find any rules regarding the effect of inflation pressure of bias ply tires on the tractive performance of tractors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号