首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The finite element (FE) and statistical energy analysis (SEA) methods have, respectively, high and low frequency limitations and there is therefore a broad class of "mid-frequency" vibro-acoustic problems that are not suited to either FE or SEA. A hybrid method combining FE and SEA was recently presented for predicting the steady-state response of vibro-acoustic systems with uncertain properties. The subsystems with long wavelength behavior are modeled deterministically with FE, while the subsystems with short wavelength behavior are modeled statistically with SEA. The method yields the ensemble average response of the system where the uncertainty is confined in the SEA subsystems. This paper briefly summarizes the theory behind the method and presents a number of detailed numerical and experimental validation examples for structure-borne noise transmission.  相似文献   

2.
The vibro-acoustic characteristics of a cavity based on its vibro-acoustic FE model at times do not correlate well with the corresponding measured vibro-acoustic characteristics. Structural dynamic modeling errors that are often associated with the structural domain of the cavity are the main reasons for this discrepancy. This paper addresses this issue and deals with the improvement of the vibro-acoustic FE models of weakly coupled cavities. This particular application, hitherto, has not been much addressed, though the improvement of purely structural dynamic systems has been researched a lot. An experimental example of a 3D rectangular-box cavity with a flexible plate is considered. The study demonstrates that the improvement of the vibro-acoustic FE models through FE model updating can be an effective approach to obtain more accurate vibro-acoustic predictions. The study further addresses the question whether these improved vibro-acoustic models are suitable for vibro-acoustic design. This is answered by analyzing the accuracy with which the improved vibro-acoustic FE model predicts the effects of the structural modifications. It is finally concluded that the predictions based on the unimproved vibro-acoustic models may not be reliable and can have significant error, while the improved vibro-acoustic models give an improvement in the predictive capability of the model and are also found suitable for vibro-acoustic design.  相似文献   

3.
Finite element prediction of wave motion in structural waveguides   总被引:3,自引:0,他引:3  
A method is presented by which the wavenumbers for a one-dimensional waveguide can be predicted from a finite element (FE) model. The method involves postprocessing a conventional, but low order, FE model, the mass and stiffness matrices of which are typically found using a conventional FE package. This is in contrast to the most popular previous waveguide/FE approach, sometimes termed the spectral finite element approach, which requires new spectral element matrices to be developed. In the approach described here, a section of the waveguide is modeled using conventional FE software and the dynamic stiffness matrix formed. A periodicity condition is applied, the wavenumbers following from the eigensolution of the resulting transfer matrix. The method is described, estimation of wavenumbers, energy, and group velocity discussed, and numerical examples presented. These concern wave propagation in a beam and a simply supported plate strip, for which analytical solutions exist, and the more complex case of a viscoelastic laminate, which involves postprocessing an ANSYS FE model. The method is seen to yield accurate results for the wavenumbers and group velocities of both propagating and evanescent waves.  相似文献   

4.
Combining structural finite element method(FEM),acoustic finite element and boundary element methods,a model of elastic shell vibration of an arbitrary shell-cavity structure coupled with internal and external sound fields is built.In addition,the transfer matrices from the excitation force to vibration of the shell and internal sound field are calculated.As the fluctuating pressure of turbulent boundary layer(TBL) is a temporal-spatial random surface excitation,the overall shape function matrix is introduced,and then the relationship between power spectral density matrix of the generalized nodal force of the elastic shell and power spectral density of the temporal-spatial random surface excitation is derived.Utilizing the vibro-acoustic coupled transfer matrix,relationships between the power spectral densities of vibration of the elastic shell/internal sound field and the power spectral density matrix of the generalized nodal force are obtained.Thus,the calculation method of vibration and internal sound field of an arbitrary shell-cavity structure induced by temporal-spatial random surface excitation is established.A typical vibro-acoustic coupled model of a rectangular cavity with acoustic media internally and externally,and with elastic rectangular plate on one side,is taken as example.The vibration of the elastic shell and power spectral density of the internal sound field are calculated and compared with the analytical method.The two results generally agree with the analytical one,with deviations of about 1 dB and 2 dB,respectively.The transfer matrix method has good adaptability which is not restricted by the shell-cavity structure and the shape of the inner region.  相似文献   

5.
Prediction of noise inside tracked vehicles   总被引:1,自引:0,他引:1  
In this paper, numerical simulation has been used to predict the noise inside tracked vehicles. To determine the interaction forces between running track system and the chassis hull of a tracked vehicle, a rigid multi-body tracked vehicle mode, which includes the track moving system, was constructed and simulated using ADAMS software. Finite element (FE) and boundary element (BE) models of the chassis hull of a tracked vehicle were created and adopted to perform the vibro-acoustic analysis. Correlation between the FE and BE models and physical measurements proved sufficiently good that the models could be used to predict the interior noise in a tracked vehicle. The structural frequency dynamic response was determined using the software MSC/NASTRAN. The interior noise was predicted using the software SYSNOISE. The predicted noise levels in a tracked vehicle have been found to be in good agreement with physical measurements.  相似文献   

6.
刘进  沈琪  俞孟萨 《声学学报》2020,45(6):840-848
利用结构有限元结合声有限元及边界元方法,建立了任意薄壳腔体弹性壳板振动与内外声场的耦合模型,并计算了激励力与壳板振动和内部声场之间的传递矩阵;湍流边界层脉动压力具有时空随机面激励特性,引入整体形状函数矩阵,进一步推导弹性壳板广义节点力功率谱密度函数矩阵与随机面分布激励力功率谱密度函数的关系,再利用声振耦合传递矩阵,得到弹性壳板振动和内部声场功率谱密度函数与广义节点力功率谱密度函数矩阵的关系,形成随机分布激励下任意薄壳腔体结构振动及内部声场的计算方法。以典型的内外均有声介质且一面为弹性矩形板的矩形腔声振耦合模型为例,计算了弹性壳板振动和内部声场功率谱密度函数,并与解析方法进行了比较,两者基本吻合,偏差分别为1 dB和2 dB左右。传递矩阵法不受腔体结构及其内部区域形状的制约,具有良好的适用性。   相似文献   

7.
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models.  相似文献   

8.
A new hybrid finite-difference (FD) and pseudospectral (PS) method adapted to the modeling of piezoelectric transducers (PZTs) is presented. The time-dependent equations of propagation are solved using the PS method while the electric field induced in the piezoelectric material is determined through a FD representation. The purpose of this combination is to keep the advantages of both methods in one model: the adaptability of FD representation to model piezoelectric elements with various geometries and materials, and the low number of nodes per wavelength required by the PS method. This approach is implemented to obtain an accurate algorithm to simulate the propagation of acoustic waves over large distances, directly coupled to the calculation of the electric field created inside the piezoelectric material, which is difficult with classical algorithms. These operations are computed using variables located on spatially and temporally staggered grids, which attenuate Gibbs phenomenon and increase the algorithm's accuracy. The two-dimensional modeling of a PZT plate excited by a 50 MHz sinusoidal electrical signal is performed. The results are successfully compared to those obtained using the finite-element (FE) algorithm of ATILA software with configurations spatially and temporally adapted to the FE requirements. The cost efficiency of the FD-PS time-domain method is quantified and verified.  相似文献   

9.
This paper is concerned with finite element (FE) prediction of forced vibrations using a linear viscoelastic constitutive vibration damping modelling technique. A combined numerical and experimental investigation was performed on two bonded aluminium-PMMA (polymethyl methacrylate) plates with different geometry. Three-dimensional FE models were established using experimentally estimated PMMA material properties (elastic and damping) from previously published procedures. The viscoelastic material damping parameters are here validated from the perspective of accurate estimation of constitutive material properties. Vibration responses were predicted from the FE models and measured on the two composite plate structures at a large number of points. Comparisons between the numerical FE simulations and corresponding measured responses show that the estimated material damping properties used as input to the computations are very accurate and may be treated as independent of the geometry and boundary conditions of the plate structures, i.e., as constitutive damping parameters.  相似文献   

10.
This paper describes a new design method to optimize thickness distribution of a multilayered structure which is located on the coupling surface between a structure and an acoustic cavity. The design method is based on the concept of the density approach in topology optimization incorporating a transfer matrix for a multilayered structure that includes a poroelastic media layer. The one-dimensional transfer matrix adopted here is an approximate representation addressing vibro-acoustic effects inherent in a multilayered structure, and balances calculation resources and desired accuracy. Applying the transfer matrix representation as boundary conditions on the coupling surface between a structure and an acoustic cavity, the modified equilibrium equation of the vibro-acoustic system is derived which is approximately but efficiently solved by the modal approach. In this study, the problem of minimizing the acoustic pressure within the cavity over the prescribed frequency range is formulated under the volume constraint of the poroelastic media layer. The continuous approximation of thickness distribution is assumed, and the thickness of the poroelastic media layer at each nodal point is chosen as design variables. Numerical results show that an acoustic response is significantly reduced by the optimal thickness distribution having a total weight equal to or less than that in the initial uniform thickness. These demonstrate that the proposed method is effective to design the optimal thickness distribution of a multilayered structure.  相似文献   

11.
Helical springs constitute an integral part of many mechanical systems. Usually, a helical spring is modelled as a massless, frequency independent stiffness element. For a typical suspension spring, these assumptions are only valid in the quasi-static case or at low frequencies. At higher frequencies, the influence of the internal resonances of the spring grows and thus a detailed model is required. In some cases, such as when the spring is uniform, analytical models can be developed. However, in typical springs, only the central turns are uniform; the ends are often not (for example, having a varying helix angle or cross-section). Thus, obtaining analytical models in this case can be very difficult if at all possible. In this paper, the modelling of such non-uniform springs are considered. The uniform (central) part of helical springs is modelled using the wave and finite element (WFE) method since a helical spring can be regarded as a curved waveguide. The WFE model is obtained by post-processing the finite element (FE) model of a single straight or curved beam element using periodic structure theory. This yields the wave characteristics which can be used to find the dynamic stiffness matrix of the central turns of the spring. As for the non-uniform ends, they are modelled using the standard finite element (FE) method. The dynamic stiffness matrices of the ends and the central turns can be assembled as in standard FE yielding a FE/WFE model whose size is much smaller than a full FE model of the spring. This can be used to predict the stiffness of the spring and the force transmissibility. Numerical examples are presented.  相似文献   

12.
The development of a methodology for accurate and reliable condition assessment of civil structures has become very important. The finite element (FE) model updating method provides an efficient, non-destructive, global damage identification technique, which is based on the fact that the modal parameters (eigenfrequencies and mode shapes) of the structure are affected by structural damage. In the FE model the damage is represented by a reduction of the stiffness properties of the elements and can be identified by tuning the FE model to the measured modal parameters. This paper describes an iterative sensitivity based FE model updating method in which the discrepancies in both the eigenfrequencies and unscaled mode shape data obtained from ambient tests are minimized. Furthermore, the paper proposes the use of damage functions to approximate the stiffness distribution, as an efficient approach to reduce the number of unknowns. Additionally the optimization process is made more robust by using the trust region strategy in the implementation of the Gauss-Newton method, which is another original contribution of this work. The combination of the damage function approach with the trust region strategy is a practical alternative to the pure mathematical regularization techniques such as Tikhonov approach. Afterwards the updating procedure is validated with a real application to a prestressed concrete bridge. The damage in the highway bridge is identified by updating the Young's and the shear modulus, whose distribution over the FE model are approximated by piecewise linear functions.  相似文献   

13.
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid–structure interaction (FSI) to evaluate their acoustic insulation.  相似文献   

14.
15.
High speed switching of current in gradient coils within high magnetic field strength magnetic resonance imaging (MRI) scanners results in high acoustic sound pressure levels (SPL) in and around these machines. Many studies have already been conducted to characterize the sound field in and around MRIs and various methods have been investigated to attenuate the noise generated. In the work presented here a computational vibro-acoustic model was developed based on an iteratively modified and validated finite element (FE) model to characterize the acoustic noise properties of the gradient coil. The simulation results from the computational model were verified through experimental noise measurement for the gradient coil insert in a 4 T MRI scanner by using swept sinusoidal time waveform inputs. Comparisons show that the computational model predicts the noise characteristic properties extremely accurately. There are three dominant frequency bands where the SPL is much higher than those at other frequencies. The SPL in the horizontal direction is much higher than that in the vertical direction due to the excitation to the horizontally placed X coil. The SPL to the inner surface of the coil is higher than far from the inner surface, which proves that the acoustic noise is radiated from the inner surface and primarily caused by the normal vibration of the inner surface. Further verification was conducted by using two types of trapezoidal sequence inputs usually used, which is to simulate real scanning sequences for small animals. Again the accuracy of the developed model is verified. The validated acoustic computational model could be used as an effective method to predict the noise that would be produced by a coil in the design stage. Modification of the structural design or the excitation pulse could be performed to reduce the acoustic noise when the gradient coil is in scanning.  相似文献   

16.
The dynamic response of circular cylinders can be obtained analytically in very few (and simple) cases. For complicated (thick or anisotropic) circular cylinders, researchers often resort to the finite element (FE) method. This can lead to large models, especially at higher frequencies, which translates into high computational costs and memory requirements. In this paper, the response of axially homogenous circular cylinders (that can be arbitrarily complex through the thickness) is obtained using the wave and finite element (WFE) method. Here, the homogeneity of the cylinder around the circumference and along the axis are exploited to post-process the FE model of a small rectangular segment of the cylinder using periodic structure theory and obtain the wave characteristics of the cylinder. The full power of FE methods can be utilised to obtain the FE model of the small segment. Then, the forced response of the cylinder is posed as an inverse Fourier transform. However, since there are an integer number of wavelengths around the circumference of a closed circular cylinder, one of the integrals in the inverse Fourier transform becomes a simple summation, whereas the other can be resolved analytically using contour integration and the residue theorem. The result is a computationally efficient technique for obtaining the response to time harmonic, arbitrarily distributed loads of axially homogenous, circular cylinders with arbitrary complexity across the thickness.  相似文献   

17.
Model updating techniques are used to update a finite element model of a structure so that an updated model predicts the dynamics of a structure more accurately. The application of such an updated model in dynamic design demands that it also predict the effects of structural modifications with a reasonable accuracy. This paper deals with updating of a finite element model of a structure and its subsequent use for predicting the effects of structural modifications. Updated models have been obtained by a direct model updating method and by an iterative method of model updating based on the frequency response function (FRF) data. The suitability of updated models for predicting the effect of structural modifications is evaluated by some computer and laboratory experiments. First a study is performed using a simulated fixed-fixed beam. Cases of complete, incomplete and noisy data are considered. Updated models are obtained by the direct and the FRF-based method in each of these cases. These models are then used for predicting the changes in the dynamic characteristics brought about due to a mass and a beam modification. The simulated study is followed by a study involving actual measured data for the case of an F-shape test structure. The updated finite element models for this structure are obtained again by the direct and the FRF-based method. Structural modifications in terms of mass and beam modifications are then introduced to evaluate the updated model for its usefulness in dynamic design. It is found that the predictions based on the iterative method based updated model are reasonably accurate and, therefore, this updated model can be used with reasonable accuracy to perform dynamic design. The predictions on the basis of the direct method based updated model are found to be reasonably accurate in the lower portion of the updating frequency range but the predictions are in a significant error in the remaining portion of the updating frequency range. It is concluded that the updated models that are closer to the structure physically are likely to perform better in predicting the effects of structural modification.  相似文献   

18.
Finding the distribution of vibro-acoustic energy in complex built-up structures in the mid-to-high frequency regime is a difficult task. In particular, structures with large variation of local wavelengths and/or characteristic scales pose a challenge referred to as the mid-frequency problem. Standard numerical methods such as the finite element method (FEM) scale with the local wavelength and quickly become too large even for modern computer architectures. High frequency techniques, such as statistical energy analysis (SEA), often miss important information such as dominant resonance behavior due to stiff or small scale parts of the structure. Hybrid methods circumvent this problem by coupling FEM/BEM and SEA models in a given built-up structure. In the approach adopted here, the whole system is split into a number of subsystems that are treated by either FEM or SEA depending on the local wavelength. Subsystems with relative long wavelengths are modeled using FEM. Making a diffuse field assumption for the wave fields in the short wave length components, the coupling between subsystems can be reduced to a weighted random field correlation function. The approach presented results in an SEA-like set of linear equations that can be solved for the mean energies in the short wavelength subsystems.  相似文献   

19.
The free vibration analysis of a carbon nanotube (CNT) embedded in a volume element is performed using 3D finite element (FE) and analytical models. Three approaches consist of molecular and continuum mechanics FE methods and continuum analytical method are employed to simulate the CNT, interphase region and surrounding matrix. The bonding between CNT and polymer is treated as non-perfect bonding using van der Waals and triple phase material interaction in first and second approaches. In analytical approach a perfect bonding is assumed between nanotube and matrix. First, natural frequencies of CNT under different boundary conditions and aspect ratios are obtained by three approaches and the results are compared with published data. The results show the frequency response variations of CNT in GHz to THz range. Subsequently, vibration behaviors of CNT/polymer are evaluated and the results revealed the importance of interphase region role in the performance of nanocomposites. The results also showed the convergence of the natural frequencies for 1–2.5% of CNT volume in high aspect ratios using three methods, so that the interphase effects is negligible. In addition, it is observed that the molecular method due to interphase role has proper performance in vibration behavior investigation of volume elements.  相似文献   

20.
This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号