首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble‐metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer‐like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt‐free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion‐induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer‐coated nanoparticles and a hydrophobic substrate.  相似文献   

2.
A combination of hard sphere and high internal phase emulsion templating gives a platform for synthesizing hierarchically porous polymers with a unique topology exhibiting interconnected spherical features on multiple levels. Polymeric spheres are fused by thermal sintering to create a 3D monolithic structure while an emulsion with a high proportion of internal phase and monomers in the continuous phase is added to the voids of the previously constructed monolith. Following polymerization of the emulsion and dissolution of the templating structure, a down‐replicating topology is created with a primary level of pores as a result of fused spheres of the 3D monolithic structure, a secondary level of pores resulting from the emulsion's internal phase, and a tertiary level of interconnecting channels. Thiol‐ene chemistry with divinyladipate and pentaerythritol tetrakis(3‐mercaptopropionate) is used to demonstrate the preparation of a crosslinked polyester with overall porosity close to 90%. Due to multilevel porosity, such materials are interesting for applications in bone tissue engineering, possibly simulating the native sponge like bone structure. Their potential to promote ossteointegration is tested using human bone derived osteoblasts. Material–cell interactions are evaluated and they reveal growth and proliferation of osteoblasts both on surface and in the bulk of the scaffold.  相似文献   

3.
A series of well‐defined thermoresponsive graft polymers with different lengths and graft densities, poly(glycidyl methacrylate)‐graft‐poly(N‐isopropylacrylate) (PGMA‐g‐PNIPAM), were successfully prepared by combination of controlled/living free radical polymerization and click chemistry. Effects of grafting length and density on the thermoresponsive behavior, aggregating mean diameter, and self‐assembly morphology are systematically investigated. The thermosensitive characteristics of graft polymers in aqueous solution prove that the length and graft density had positive co‐relationship with the lower critical solution temperature value and mean diameter of micelles as well as the size distribution, while the effect of graft length of polymers is more significant than that of density. Transmission electron microscopy analysis shows that the conformations of PGMA45g‐PNIPAM20 and PGMA45g‐PNIPAM46 with longer length and bigger grafting density in aqueous solutions are spherical nanoparticles with the increasing trend of the diameters, while that of PGMA45g‐PNIPAM(73, 50%) shows a spherical‐like morphology, which indicates that the graft length and density have a significant effect on the mean diameter of micelle but not on the self‐assembly morphology. These results reveal that to obtain desired thermoresponsive behavior and self‐assembly morphology of functional polymers, it is essential to design and fabricate the structure of graft polymers with proper length and graft density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2442–2453  相似文献   

4.
Based on the growing demand for facile and sustainable synthetic methods to structurally perfect polymers, we herein describe a significant improvement of esterification reactions capitalizing on 1,1′‐carbonyldiimidazole (CDI). Cesium fluoride was shown to be an essential catalyst for these reactions to reach completion. This approach was successfully applied to the synthesis of structurally flawless and highly functional polyester dendrimers employing traditional and accelerated growth strategies. A sixth generation bis‐MPA dendrimer with a molecular weight of 22.080 Da and 192 peripheral hydroxy groups was isolated in less than one day of total reaction time. Large quantities of dendrimerswere obtained in high yields (>90 %) using simple purification steps under sustainable conditions. The fluoride‐promoted esterification (FPE) via imidazolide‐activated compounds is wide in scope and constitutes a potentially new approach toward functional polymers and other materials.  相似文献   

5.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

6.
A series of poly(ethylene glycol)‐block‐poly(allyl glycidyl ether) (PEG‐b‐PAGE) macroinitiators are prepared using the living anionic ring‐opening polymerization (AROP) technique, and applied for further copolymerization studies. To overcome the low reactivity of the secondary hydroxyl end‐group of the PAGE block, a primary hydroxyl group is introduced into the macroinitiators via trityl and tert‐butyl‐dimethylsilane protective groups. The modified macroinitiators are used for copolymerization by applying different amounts of PEG‐b‐PAGE (5, 10, and 15%) and different PLGA lengths. To study their properties, nanoparticles from selected polymers are prepared and characterized by dynamic light scattering and scanning electron microscopy showing spherical particles with diameters around 200 nm and low PDIparticle values of 0.03–0.1. An advantage of the obtained polymers is the presence of double bonds in the side chain, which enables the modification via, for example, thiol‐ene reactions. For this purpose tertiary 2‐(dimethylamino)ethanethiol), acetylated thiogalactose and thiomannose are attached onto the double bonds of the PAGE‐blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2163–2174  相似文献   

7.
Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell‐ and core‐crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell‐ and core‐crosslinked nanoparticles is driven from the ease by which the structures of the shell‐ and core‐forming polymers and crosslinkers can be modified. In addition, postmodification with cell‐recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell‐, core‐, or core–shell‐crosslinked knedel‐like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell‐crosslinked knedel‐like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
This paper is aiming to give a brief overview of recent research in the field of all‐solid‐state, internal solution free, ion‐selective electrodes and reference electrodes, employing conducting polymers or nano‐/microstructures as solid contacts beneath the polymeric, ion‐selective or reference membranes. The emphasis is on papers published in the last five years (after 2006). According to the papers published, poly(3‐octylthiophene) conducting polymer transducers offer highly reliable sensors for various applications, involving demanding analytical approaches and miniature sensors. On the other hand, the search for alternative materials continues: the sensors obtained by placing nano‐/microstructures (conducting polymers but also other materials, like, e.g., carbon nanotubes) underneath the receptor membrane are intensively tested. The recent years have also shown how useful the application of advanced instrumental methods is for the investigation of processes occurring within all‐solid‐state ion‐selective electrodes.  相似文献   

9.
Harnessing metal‐free photoinduced reversible‐deactivation radical polymerization (photo‐RDRP) in organic and aqueous phases, we report a synthetic approach to enzyme‐responsive and pro‐apoptotic peptide brush polymers. Thermolysin‐responsive peptide‐based polymeric amphiphiles assembled into spherical micellar nanoparticles that undergo a morphology transition to worm‐like micelles upon enzyme‐triggered cleavage of coronal peptide sidechains. Moreover, pro‐apoptotic polypeptide brushes show enhanced cell uptake over individual peptide chains of the same sequence, resulting in a significant increase in cytotoxicity to cancer cells. Critically, increased grafting density of pro‐apoptotic peptides on brush polymers correlates with increased uptake efficiency and concurrently, cytotoxicity. The mild synthetic conditions afforded by photo‐RDRP, make it possible to access well‐defined peptide‐based polymer bioconjugate structures with tunable bioactivity.  相似文献   

10.
We report a new method in which spontaneous self‐assembly is employed to synthesize monodisperse polymer nanoparticles with controlled size (<50 nm), shape, tunable functionality, and enhanced solvent and thermal stability. Cooperative noncovalent interactions, such as hydrogen bonding and aromatic π–π stacking, assist self‐assembly of amphiphilic macromolecules (polystyrene‐block‐polyvinylpyridine, PS? PVP) and structure directing agents (SDAs) to form both spherical and anisotropic solid polymer nanoparticles with SDAs residing in the particle core surrounded by the polymers. Through detailed investigations by scanning electron microscopy and transmission electron microscopy (TEM), we have rationalized nanoparticle morphology evolution and dependence on factors such as SDA concentration and PVP size. By keeping the PS chain size constant, the particle morphology progresses from continuous films to spherical particles, and on to cylindrical nanowires or rods with increasing the PVP chain size. The final nanoparticles are very stable and can be redispersed in common solvents to form homogenous solutions and thin films of ordered nanoparticle arrays through solvent evaporation processes. These nanoparticles exhibit tunable fluorescent colors (or emissions) depending on the choices of the central SDAs. Our method is simple and general without requiring complicated synthetic chemistry, stabilizing surfactants, or annealing procedures (e.g., temperature or solvent annealing), making scalable synthesis feasible.  相似文献   

11.
A facile approach to bimetallic phosphides, Co‐Fe‐P, by a high‐temperature (300 °C) reaction between Co‐Fe‐O nanoparticles and trioctylphosphine is presented. The growth of Co‐Fe‐P from the Co‐Fe‐O is anisotropic. As a result, Co‐Fe‐P nanorods (from the polyhedral Co‐Fe‐O nanoparticles) and sea‐urchin‐like Co‐Fe‐P (from the cubic Co‐Fe‐O nanoparticles) are synthesized with both the nanorod and the sea‐urchin‐arm dimensions controlled by Co/Fe ratios. The Co‐Fe‐P structure, especially the sea‐urchin‐like (Co0.54Fe0.46)2P, shows enhanced catalysis for the oxygen evolution reaction in KOH with its catalytic efficiency surpassing the commercial Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for important catalysis and energy storage applications.  相似文献   

12.
Two triblock polymers, tetraaniline‐block‐poly(N‐isopropyl acrylamide)‐block‐poly(hydroxyethyl acrylate) (TA‐b‐PNIPAM‐b‐PHEA) and TA‐b‐PHEA‐b‐PNIPAM, were synthesized with unambiguous structure by a two step method. The difference of these two diblock polymers is the connection order of carboxyl group to block, e.g., carboxyl group to PNIPAM block for PNIPAM‐b‐PHEA and to PHEA block for PHEA‐b‐PNIPAM. Secondly, block tetraaniline was linked to the diblock polymer through amidation to yield the corresponding triblock copolymer. Both of them have almost the identical chemical compositions. The only difference is the connection order of each block in the triblock polymers. When they were self‐assembled at 45°C in a suitable solution, both of their aggregates have spherical shape with slight defects on their surface with the average diameter of about 400 nm. However, when their aggregate dispersion was cooled down to 20°C, only TA‐b‐PHEA‐b‐PNIPAM's morphology changed, forming worm‐like aggregates with the diameter of about 100–200 nm transformed from spherical aggregates. Both amphiphilic property and position of each block in this triblock copolymer are very essential for this morphology transformation. Since the worm‐like aggregates presented here by our group have hollow structure inside, its controlled release properties for doxorubicin were evaluated. Drug release experiment indicated that along with the temperature changes, the rearrangement of the intermediate layer structure caused morphology change in aggregate, thus accelerating the speed of drug release.  相似文献   

13.
A strategy to study polymeric systems with ordered structures, and in particular comb‐like polymers, is presented. These are dense systems for which atomistic simulations with conventional methods are difficult or even impracticable. The strategy, which has been incorporated into a computer program named MCDP, is based on a Configuration Bias Monte Carlo algorithm and a method to investigate the structure of crystalline polymers using force‐field calculations. To obtain a maximum efficiency, the MCDP computer program has been optimized and parallelized. The ability of MCDP to investigate ordered polymers have been tested by simulating two complex systems: (1) the crystal structure of poly(4‐methyl‐1‐pentene), and (2) the biphasic structure of poly(α‐octyl‐β‐L‐aspartate), a comb‐like polyamide derived from β‐amino acids. The results obtained from MCDP simulations demonstrates the efficiency and reliability of this method to study both the NVT and NPT behavior of ordered dense polymers. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 162–171, 2001  相似文献   

14.
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain‐like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence‐dependent phase structures. Not only compositional variation changed the self‐assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank–Kasper phases. The formation mechanism was attributed to the conformational change driven by the collective hydrogen bonding and the sequence‐mandated topology of the molecules. These results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self‐assembly.  相似文献   

15.
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain‐like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence‐dependent phase structures. Not only compositional variation changed the self‐assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank–Kasper phases. The formation mechanism was attributed to the conformational change driven by the collective hydrogen bonding and the sequence‐mandated topology of the molecules. These results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self‐assembly.  相似文献   

16.
Dendron‐like poly(ε‐benzyloxycarbonyl‐L ‐lysine)/linear poly(ethylene oxide) block copolymers (i.e., Dm‐PZLys‐b‐PEO, m = 0 and 3; Dm are the propargyl focal point poly(amido amine) dendrons having 2m primary amine groups) were for the first time synthesized by combining ring‐opening polymerization (ROP) of ε‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys‐NCA) and click chemistry, where Dm‐PZLys homopolypeptides were click conjugated with azide‐terminated PEO. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. Both homopolypeptides and copolymers presented a liquid crystalline phase transition for PZLys block, and the transition was irreversible. Moreover, the degree of crystallinity of PEO block within linear copolymers decreased from 96.2% to 20.4% with increasing PZLys composition, whereas that within dendritic copolymers decreased to zero. The secondary conformation of PZLys progressively changed from β‐sheet to α‐helix with increasing the chain length. These copolymers self‐assembled into spherical nanoparticles in aqueous solution, and the anticancer drug doxorubicin‐loaded nanoparticles gave a similar morphology compared with their blank counterparts. The drug‐loaded nanoparticles showed a triphasic drug‐release profile at aqueous pH 7.4 or 5.5 and 37 °C and sustained a longer drug‐release period for about 2 months. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
用水和乙二醇混合物为溶剂,应用溶剂热合成方法制备了由纳米颗粒自组装的球、空心球和线形结构的铜的硫化物,如 Cu7S4, Cu1.8S, Cu1.81S 和 Cu2S。 考查了溶剂组成(水含量的变化)、反应时间、实验温度的变化对所制备样品的形貌和物相结构的影响。研究了其形成机理。结果表明,随着反应时间的变化,首先形成纳米颗粒的铜的硫化物。通过自组装形成线形结构。最后转化为球形或空心球形结构。  相似文献   

18.
A series of brush‐like amphiphilic organopolysiloxanes with varying hydrophilic side‐chains was prepared, and the assembly behavior of these promising polymers was investigated in aqueous solution using a combination method of surface tension, steady‐state fluorescence, dynamic light scattering, and transmission electron microscopy. An increasing number of side‐chains could lead a higher surface tension of the polymer solution. The polymers formed regular “micelle‐like” spherical multipolymer assemblies in aqueous solution with the size distributed from the scale of hundreds to that of tens of nanometer, and the polymers that possessed more of the side‐chains would form comparatively loose and swollen assemblies with slightly higher micropolarities and bigger dimensions. The interesting discovery in this report was that the visible clearness of the solution could be improved by increasing the hydrophilicity of the assemblies in the solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439  相似文献   

20.
A new method is applied to prepare stable aqueous dispersion of magnetic iron oxide nanoparticles (MNPs) by biocompatible maleate polymers. Fe3O4 magnetic core–shell nanoparticles are obtained via forming an inclusion complex between carboxylic acid groups of maleated biocompatible polymers shell and Fe3O4 MNPs core surface. Maleate polymers are synthesized via esterification of poly(ethylene glycol), poly(vinyl alcohol) and starch with maleic anhydride (MA). The Fe3O4 magnetic core–shell nanoparticles are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The obtained magnetic core–shell nanoparticles exhibit superparamagnetic property and reveal long‐term aqueous stability. This work represents a valid methodology to produce highly stable aqueous dispersion of Fe3O4 MNPs ferrofluids which can be expected to have great potential as contrast agent for magnetic resonance imaging. Furthermore, the shell composition of biocompatible maleate polymers with double bond of MA as crosslinker agent allows the polymerization with other monomers to design preferred drug delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号