首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Laser-Doppler velocimeter measurements of a wing/body junction flow field made within a plane to the side of the wing/wall junction and perpendicular both to a 3:2 elliptical nose—NACA 0020 tail wing, and a flat wall are presented. Reynolds number of the approach boundary layer was, Reθ = 5940, and free-stream air velocity was, Uref = 27.5 m/s. A large vortical structure residing in the outer region redirects the low-turbulence free-stream flow to the vicinity of the wing/wall junction, resulting in thin boundary layers with velocity magnitudes higher than free-stream flow. Lateral pressure gradients result in a three-dimensional separation on the uplifting side of the vortex. Additionally, a high vorticity vortical structure with opposite sense to the outer-layer vortex forms beneath the outer-layer vortex. Normal and shear stresses increase to attain values an order of magnitude larger compared to values measured in a three-dimensional boundary layer just outside the junction vortex. Bimodal histograms of the w fluctuating velocity occur under the outer-layer vortex near the wall due to the time-dependent nature of the horseshoe vortex. In such a flow the shear-stress angle (SSA) highly lags the flow-gradient angle (FGA), and the turbulence diffusion is highly altered due to presence of vortical structures.  相似文献   

2.
 An actuator, which produces several different flow fields that may be used for active flow control, is characterized in still air using flow visualization and velocity measurements. The primary actuator-induced flow fields are: free jets, wall jets, and vortex flows. The non-dimensional parameters governing these actuator-induced flows are developed. For the vortex-flow regime, the operational range of the actuator increases as it’s size decreases without a significant decrease in either the actuator induced velocity or vortex core size. The velocity scaling is developed for the vortex flow and suggests that the optimum actuator efficiency occurs at a Stokes number of approximately 7.9 for the range of parameters surveyed. In a turbulent, zero pressure gradient boundary layer, measurements made just downstream of the actuator (when operated in the vortex mode) indicate a vortical disturbance is generated in the boundary layer. Received: 2 September 1998/Accepted: 9 January 1999  相似文献   

3.
The flow of a gravity current past a circular cylinder mounted above a bottom wall is studied by means of two-dimensional Navier–Stokes simulations. The investigation focuses on the effects of the gap size on the forces acting on the cylinder. The interaction of the current with the cylinder can be divided into an impact, a transient, and a quasisteady stage. During the impact stage, the gravity current meets the cylinder, and the drag increases towards a maximum, while the lift undergoes a drastic fluctuation which increases noticeably with the gap size. During the quasisteady stage, the flow past the cylinder resembles that observed in constant-density boundary layer flows past cylinders: Karman vortex shedding is observed for sufficiently large gap sizes, while a vorticity cancellation mechanism is responsible for the suppression of vortex shedding at small gap sizes. On the other hand, interesting differences that distinguish the gravity current case from the constant-density case are the presence in the gravity current flow of a component of the mean quasisteady lift due to buoyancy, and another component from the deflection of the wake towards the wall by the constriction of the dense fluid flow downstream of the cylinder, as well as the cancellation of vortex shedding for all gap sizes when the ratio of the channel depth to lock height is decreased from 5 to 1.  相似文献   

4.
The flow around a circular cylinder placed close to a horizontal plane wall was investigated experimentally. Fluctuations of lift and drag of the cylinder and wall interference effects were studied in terms of the gap height between the cylinder and wall and the thickness of the turbulent wall boundary layer. The fluctuating fluid forces acting on the cylinder sharply increased, and the regular vortex shedding, i.e. Kárman vortex streets, started to form beyond a critical gap height. The formation of Kárman vortex streets was abruptly interrupted when the bottom of the cylinder came in contact with the outer layer of the boundary layer developed on the wall. This critical gap height correlated well with the thickness of the boundary layer.  相似文献   

5.
The present paper investigates a numerical study of flow instabilities in transient mixed convection in a vertical pipe. At the entrance of the pipe, the flow is suddenly submitted to a temperature step. The convection heat transfer on the outer surface of the pipe is taken into account. The governing equations are solved using a finite difference explicit scheme. The numerical results show that the time development of streamlines and isotherms is strongly dependent on the inlet temperature steps. For positive temperature steps, the unsteady vortex is significant in the vicinity of the wall and the reversal flow appears below the wave instability. In the case of negative temperature steps and especially for the low Reynolds number, the reversal flow appears on top of the wave instability. During the transient, the apparition of the vortical structures along the wall leads to the wall boundary layer instability. This phenomenon is due to the transient mixed convection flows. The temperature step effects on the heat transfer of the flow are presented in our paper.  相似文献   

6.
This paper comprises an in-depth physical discussion of the flow-induced vibration of two circular cylinders in view of the time-mean lift force on stationary cylinders and interaction mechanisms. The gap-spacing ratio T/D is varied from 0.1 to 5 and the attack angle α from 0° to 180° where T is the gap width between the cylinders and D is the diameter of a cylinder. Mechanisms of interaction between two cylinders are discussed based on time-mean lift, fluctuating lift, flow structures and flow-induced responses. The whole regime is classified into seven interaction regimes, i.e., no interaction regime; boundary layer and cylinder interaction regime; shear-layer/wake and cylinder interaction regime; shear-layer and shear-layer interaction regime; vortex and cylinder interaction regime; vortex and shear-layer interaction regime; and vortex and vortex interaction regime. Though a single non-interfering circular cylinder does not correspond to a galloping following quasi-steady galloping theory, two circular cylinders experience violent galloping vibration due to shear-layer/wake and cylinder interaction as well as boundary layer and cylinder interaction. A larger magnitude of fluctuating lift communicates to a larger amplitude vortex excitation.  相似文献   

7.
This study is motivated by understanding the connections between the vortical structures in impinging jets and the wall heat transfer. Of particular interest are: (1) examining how the stage of evolution of vortex pairing in the jet might influence the wall heat transfer, and (2) establishing correlations between the vortex characteristics and the Nusselt number (Nu) distribution. To this end, CFD simulations are conducted of three simplified model problems involving the interaction of isolated axisymmetric vortex rings with a flat, constant-temperature, heated wall. The cases represent three scenarios of vortex-wall interaction: before (Case I), during (Case II) and after (Case III) pairing. The results show that when two vortices concurrently interact with the wall and undergo pairing (Case II), a significant instantaneous enhancement in Nu is attained in comparison to that associated with a single vortex interacting with the wall (Cases I and III). However, Case II also leads to the largest subsequent decay in Nu enhancement due to the formation of a particularly strong secondary vortex. In all cases, a deterioration in Nu, relative to unsteady diffusion, is observed simultaneously with the enhancement. Notwithstanding this deterioration, the net effect of vortex-wall interaction on the heat transfer remains positive with Case II producing the highest heat transfer rate. An analysis is conducted to establish the connection between the instantaneous maximum and minimum Nu, the circulation and the radial and the wall-normal location of the core-centers of the vortices, the thermal boundary layer thickness, the boundary layer separation location and the wall shear stress.  相似文献   

8.
Characteristics of unsteady type IV shock/shock interaction   总被引:1,自引:0,他引:1  
Characteristics of the unsteady type IV shock/shock interaction of hypersonic blunt body flows are investigated by solving the Navier–Stokes equations with high-order numerical methods. The intrinsic relations of flow structures to shear, compression, and heating processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous surface-heating peak is caused by the fluid in the “hot spot” generated by an oscillating and deforming jet bow shock (JBS) just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer interaction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the interaction of the JBS and the shear layers formed by a supersonic impinging jet, and then the interaction of the freestream bow shocks and the compression waves results in entropy and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of the flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.  相似文献   

9.
When a gas flows with hypersonic velocity over a slender blunt body, the bow shock induces large entropy gradients and vorticity near the wall in the disturbed flow region (in the high-entropy layer) [1]. The boundary layer on the body develops in an essentially inhomogeneous inviscid flow, so that it is necessary to take into account the difference between the values of the gas parameters on the outer edge of the boundary layer and their values on the wall in the inviscid flow. This vortex interaction is usually accompanied by a growth in the frictional stress and heat flux at the wall [2, 3]. In three-dimensional flows in which the spreading of the gas on the windward sections of the body causes the high-entropy layer to become narrower, the vortex interaction can be expected to be particularly important. The first investigations in this direction [4–6] studied the attachment lines of a three-dimensional boundary layer. The method proposed in the present paper for calculating the heat transfer generalizes the approach realized in [5] for the attachment lines and makes it possible to take into account this effect on the complete surface of a blunt body for three-dimensional laminar, transition, or turbulent flow regime in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 80–87, January–February, 1981.  相似文献   

10.
Generating an adverse pressure gradient (APG), using a rotating cylinder in the proximity of a plane wall under a laminar freestream flow, is studied numerically in this work. The magnitude of the generated APG is a function of the gap, G, between the cylinder and the wall, and the rotational speed of the cylinder, Ω. The flow in such a configuration is characterized by periodic transient vortex shedding at high Reynolds number. A numerical model for the computation of the transient flow for this configuration is developed using the ANSYS CFD simulation tool. The model is validated against published experimental and numerical data for similar flow configurations and excellent agreement is observed. A parametric study is carried out for different combinations of G and Ω for two different Reynolds numbers of 200 and 1000 to examine the development of the resulting separation bubble due to the generated APG. The mechanism of the boundary layer separation over the plane wall and the corresponding wake dynamics is investigated. Results are presented in terms of the distribution of the pressure coefficient as well as skin friction coefficient along the wall and flow patterns around and downstream of the cylinder in the proximity of the wall. The results of these computations confirm that using a rotating cylinder over a plane wall in a freestream flow is an effective technique to generate a controlled range of adverse pressure gradients.  相似文献   

11.
The vortical structures in the rear separation and wake region produced by a micro-ramp that immersed in a supersonic turbulent boundary layer are investigated. The small scale separation close to the trailing edge was revealed and this confirms the previous experimental observation. Between the reverse region and surrounding fast moving flow, a three-dimensional shear layer was formed, and vortices are generated. By using vortex line method, the spiral points were illustrated as the cross-sections of the Ω-shaped vortices that follow the shape of the separation. The vortical structure was analogous to that in the wake region, where similar Ω-shaped vortex which follows the deficit region caused by the micro-ramp can be observed. Finally, the revealed flow topology was conceived new and beneficial to the studying of wall bounded turbulence which involves similar vortical structures but in a smaller scale, compared with the vortical pattern in the current micro-ramp wake.  相似文献   

12.
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien–Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.  相似文献   

13.
 A laminar wall jet undergoing transition is investigated using the particle image velocimetry (PIV) technique. The plane wall jet is issued from a rectangular channel, with the jet-exit velocity profile being parabolic. The Reynolds number, based on the exit mean velocity and the channel width, is 1450. To aid the understanding of the global flow features, laser-sheet/smoke flow visualizations are performed along streamwise, spanwise, and cross-stream directions. Surface pressure measurements are made to correlate the instantaneous vorticity distribution with the surface pressure fluctuations. The instantaneous velocity and vorticity field measurements provide the basis for understanding the formation of the inner-region vortex and the subsequent interactions between the outer-region (free-shear-layer region) and inner-region (boundary-layer region) vortical structures. Results show that under the influence of the free-shear-layer vortex, the local boundary layer becomes detached from the surface and inviscidly unstable, and a vortex is formed in the inner region. Once this vortex has formed, the free-shear-layer vortex and the inner-region vortex form a vortex couple and convect downstream. The mutual interactions between these inner- and outer-region vortical structures dominate the transition process. Farther downstream, the emergence of the three-dimensional structure in the free shear layer initiates complete breakdown of the flow. Received: 8 November 1995/Accepted: 6 November 1996  相似文献   

14.
The interaction between the wake of a transverse circular cylinder and the underlying flat-plate boundary layer with a moderate gap ratio G/D=1.0 is investigated using both hydrogen-bubble-based and PIV-based visualization techniques. The spanwise rollers in the cylinder wake are found to be capable of inducing secondary vortices in the near-wall region. The mutual induction from the counter-clockwise rollers, which are closer to the wall, plays a primary role, so that these secondary vortices present linear lift-up motion at first. Their subsequent evolution dominantly determines the characteristics of the wake/boundary-layer interaction. Two different vortex interaction scenarios are observed: the secondary vortices can be either entrained into the rollers or pushed down towards the wall. This leads to a rapid three-dimensional destabilization process, through which streamwise vortices are generated. And it is suggested that these streamwise vortices are the dominant structures to promote the following boundary layer transition.  相似文献   

15.
The performance, efficiency and emissions of internal combustion (IC) engines are affected by the thermo-viscous boundary layer region and heat transfer. Computational models for the prediction of engine performance typically rely on equilibrium wall-function models to overcome the need for resolving the viscous boundary layer structure. The wall shear stress and heat flux are obtained as boundary conditions for the outer flow calculation. However, these equilibrium wall-function models are typically derived by considering canonical flow configurations, introducing substantial modeling assumptions that are not necessarily justified for in-cylinder flows. The objective of this work is to assess the validity of several model approximations that are commonly introduced in the development of wall-function models for IC-engine applications. This examination is performed by considering crank-angle resolved high-resolution micro-particle image velocimetry (µ-PIV) measurements in a spark-ignition direct-injection single cylinder engine. Using these measurements, the performance of an algebraic equilibrium wall-function model commonly used in RANS and LES IC-engine simulations is evaluated. By identifying shortcomings of this model, a non-equilibrium differential wall model is developed and two different closures are considered for the determination of the turbulent viscosity. It is shown that both wall models provide adequate predictions if applied inside the viscous sublayer. However, the equilibrium wall-function model consistently underpredicts the shear stress if applied in the log-layer. In contrast, the non-equilibrium wall model provides improved predictions of the near-wall region and shear stress irrespective of the wall distance and the piston location. By utilizing the experimental data, significant adverse pressure gradients due to the large vortical motion inside the cylinder (induced by tumble, swirl and turbulence) are observed and included in the non-equilibrium wall model to further improve the model performance. These investigations are complemented by developing a consistent wall heat transfer model, and simulation results are compared against the equilibrium wall-function model and Woschni’s empirical correlation.  相似文献   

16.
Particle image velocimetry measurements are performed in the near wake of a circular cylinder at a Reynolds number of 12,500. Attention is focused on the shear layer that develops just downstream of the separation point from the cylinder surface to investigate the possible existence of a preferred spatio-temporal organization in this flow region and the possible occurrence of the vortex pairing phenomenon. Eddy structures are identified in instantaneous velocity maps in order to investigate their spatial relationships. For that purpose a vortex extraction procedure is designed, based on the wavelet transform of instantaneous maps of the swirling strength. This algorithm allows not only the detection of the vortical structures from the instantaneous velocity fields, giving access to their instantaneous location, but also the estimation of their main characteristics such as their radius, intensity and convection velocity. The vortex population detected in the shear layer is found to be of small diameter compared to that of the von Kármán vortex and of rather high intensity, in agreement with the existence of a thin shear layer. The strong flapping motion of the shear layer and its complex spatial development is also confirmed. By employing conditional analysis of the computed data and their proper scaling, the surrounding of the detected vortex cores is investigated. A preferred spatial vortex separation is detected and is shown to vary with the longitudinal distance from the origin of the shear layer, in agreement with the qualitative behavior of a turbulent plane mixing layer. Evidence of the occurrence of the vortex pairing or amalgamation mechanisms in the shear layer is also demonstrated.  相似文献   

17.
It has been well established that large‐scale structures, usually called coherent structures, exist in many transitional and turbulent flows. The topology and range of scales of those large‐scale structures vary from flow to flow such as counter‐rotating vortices in wake flows, streaks and hairpin vortices in turbulent boundary layer. There has been relatively little study of large‐scale structures in separated and reattached transitional flows. Large‐eddy simulation (LES) is employed in the current study to investigate a separated boundary layer transition under 2% free‐stream turbulence on a flat plate with a blunt leading edge. The Reynolds number based on the inlet free stream velocity and the plate thickness is 6500. A dynamic subgrid‐scale model is employed to compute the subgrid‐scale stresses more accurately in the current transitional flow case. Flow visualization has shown that the Kelvin–Helmholtz rolls, which have been so clearly visible under no free‐stream turbulence (NFST) are not as apparent in the present study. The Lambda‐shaped vortical structures which can be clearly seen in the NFST case can hardly be identified in the free‐stream turbulence (FST) case. Generally speaking, the effects of free‐stream turbulence have led to an early breakdown of the boundary layer, and hence increased the randomization in the vortical structures, degraded the spanwise coherence of those large‐scale structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
采用分区方法及Roe三阶流通量差分分裂格式求解雷诺平均N-S方程,湍流附加黏性系数用Baldwin-Lomax模型计算,数值模拟了高超声速条件下变高度圆柱诱导的激波边界层层干扰,其流场的主要特性均与实验结果一致或规律相同,结果清晰地展示了流场结构以及气动载荷分布随柱高度的变化特征,产说明激波碰撞和旋涡运动都可能导致飞行器表面局部气动载荷的增加。  相似文献   

19.
In a rotating filter separator a suspension is introduced at one end of the annulus between a rotating porous inner cylinder and a fixed impermeable outer cylinder. The filtrate is removed through the inner cylinder and the concentrate is removed from the opposite end of the annulus from which the suspension entered. The flow in a rotating filter separator is circular Couette flow with a pressure-driven axial flow and a suction boundary condition at the inner cylinder. Flow visualization was used to determine the effect of the Taylor number, axial Reynolds number, and radial Reynolds number on the types of flows present in the annulus. A rich variety of secondary vortical flows appear, depending upon the flow parameters. The radial inflow at the inner cylinder delays the appearance of supercritical circular Couette flow and prevents the appearance of certain flow regimes that have a helical vortex structure. Nevertheless, the average azimuthal velocity measured using laser Doppler velocimetry indicates that the velocity profile is nearly the same for all supercritical flow regimes.This work was supported by a grant from The Whitaker Foundation  相似文献   

20.
Large-eddy simulations (LES) are used to investigate the modifications of wake dynamics and turbulence characteristics behind a circular cylinder placed near a wall for varying gap-to-diameter (G/D) ratios (where G signifies the gap between the wall and the cylinder, and D the cylinder diameter). The three-dimensional (3-D), time-dependent, incompressible Navier–Stokes equations with a dynamic subgrid-scale model are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed boundary (IB) method is employed to impose the no-slip boundary condition on the cylinder surface. Flow visualizations along with turbulence statistics are presented to gain insight into the flow structures that are due to interaction between the shear layers and the approaching boundary layer. Apart from the vortex shedding mechanism, the paper illustrates the physics involving the shear layer transition, stretching, breakdown and turbulence generation, either qualitatively or quantitatively, in the presence of a wall for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号