首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An analysis is made of the steady shear flow of an incompressible viscous electrically conducting fluid past an electrically insulating porous flat plate in the presence of an applied uniform transverse magnetic field. It is shown that steady shear flow exists for suction at the plate only when the square of the suction parameter S is less than the magnetic parameter Q. In this case the velocity at a given point increases with increase in either the magnetic field or suction velocity. The shear stress at the plate increases with increase in either S or the free-stream shear-rate parameter σ1 or Q. The analysis further reveals that solution exists for steady shear flow past a porous flat plate subject to blowing only when the square of the blowing parameter S1 is less than Q. It is found that the induced magnetic field at a given location decreases with increase in Q. Further the wall shear stress decreases with increase in S1. No steady shear flow is possible for blowing at the plate when S12 > Q. Received: June 16, 2004; revised: October 24, 2004  相似文献   

2.
Summary The purpose of the paper is to consider the stability for wavelike disturbances in the steady, twodimensional, laminar boundary layer of a magnetic field, which is applied uniformly normal to the flat plate. The results show that the critical Reynolds number (R c * ) increases remarkably with the characteristic parameter (). The increase of the critical Reynolds number depends not only on the shape parameter of the velocity distribution in the boundary layer but also on the peculiarity of the velocity profile. It is also found that the boundary layer holds itself laminar all over the flat plate, when the magnetic parameterN is greater than 1.25×10–7, then a reduction of the skin-frictin drag might be expeced.  相似文献   

3.
A study is made on the pulsatile flow superposed on a steady laminar flow of a viscous fluid in a parallel plate channel rotating with an angular velocity Ω about an axis perpendicular to the plates. An exact solution of the governing equations of motion is obtained. The solution in dimensionless form contain two parametersK 2L 2/v which is reciprocal of Ekmann Number and frequency parameter σ=αL 2/v. The effects of these parameters on the principal flow characters such as mean sectional velocity and shear stresses at the plates have been examined. For large σ andK 2 the flow near the plates has a multiple boundary layer character.  相似文献   

4.
Closed-form solutions are presented for the transient hydromagnetic flow in a rotating channel with inclined applied magnetic field under the influence of a forced oscillation. Magnetic Reynolds number is large enough to permit the inclusion of magnetic induction effects. The Maxwell displacement current effect is also included and simulated via a dielectric strength parameter. The governing momentum and magnetic induction conservation equations are normalized with appropriate transformations and the resulting quartet of partial differential equations are solved exactly. A parametric study is performed of the influence of oscillation frequency parameter (ω), time (T), inverse Ekman number, i.e. rotation parameter (K 2), square of the Hartmann magnetohydrodynamic (MHD) parameter (M 2), and magnetic field inclination (θ) on the primary and secondary induced magnetic field components (b x , b y ) and velocity components (u, v) across the channel. Network solutions are also obtained to validate the exact solutions and shown to be in excellent agreement. Applications of the study arise in planetary plasma physics and rotating MHD induction power generators and also astronautical flows.  相似文献   

5.
Closed-form solutions are presented for the transient hydromagnetic flow in a rotating channel with inclined applied magnetic field under the influence of a forced oscillation. Magnetic Reynolds number is large enough to permit the inclusion of magnetic induction effects. The Maxwell displacement current effect is also included and simulated via a dielectric strength parameter. The governing momentum and magnetic induction conservation equations are normalized with appropriate transformations and the resulting quartet of partial differential equations are solved exactly. A parametric study is performed of the influence of oscillation frequency parameter (ω), time (T), inverse Ekman number, i.e. rotation parameter (K 2), square of the Hartmann magnetohydrodynamic (MHD) parameter (M 2), and magnetic field inclination (θ) on the primary and secondary induced magnetic field components (b x , b y ) and velocity components (u, v) across the channel. Network solutions are also obtained to validate the exact solutions and shown to be in excellent agreement. Applications of the study arise in planetary plasma physics and rotating MHD induction power generators and also astronautical flows.  相似文献   

6.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

7.
研究不可压缩粘性导电流体,流过半无限竖直可渗透平板时,将其偏微分形式的流动和传热的基本控制方程,应用适当的相似变换,简化为非线性的常微分方程组.对两种抽吸参数:大的和小的抽吸参数,采用摄动法得到变换后方程的近似解.数值结果表明,随着磁场参数和抽吸参数的增大,任意点的速度场在减小;磁场参数的影响,引起热边界层厚度的增大;速度和温度场随着热汇参数的增大而减小.  相似文献   

8.
This paper deals with hydromagnetic flow of an electrically conducting, incompressible viscous fluid near an accelerated flat, non-conducting plate, in the presence of another parallel plate, when there is a transversely applied magnetic field. Induced magnetic field is neglected in comparison with the applied magnetic field. Laplace transform techniques are used. The equations are integrated by applying residue principle, and expressions for velocity profiles and skin-friction at both plates are derived for different values of Hartmann number M. It is observed that, with the increase of the value of the Hartmann number M, the velocity profiles are flattened, the shear stress at the stationary plate decreases, as the value of the time T and Hartmann number M increases, but the shear stress at the accelerated plate increases directly in proportion with the increase in time and Hartmann number.  相似文献   

9.
The influence of buoyancy onto the boundary‐layer flow past a horizontal plate aligned parallel to a uniform free stream is characterized by the buoyancy parameter K = Gr/Re5/2 where Gr and Re are the Grashof and Reynolds number, respectively. An asymptotiy analysis of the complete flow field including potential flow, boundary layer, wake and interaction region is given for small buoyancy parameters and large Reynolds numbers in the distinguished limit KRe1/4 = O(1). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The steady flow in a channel rotating with an angular velocity \(\vec \Omega \) and subjected to a constant transverse magnetic field is analysed. An exact solution of the governing equations is obtained. The solution in the dimensionless form contains three parameters: the Grash of number,G, the Hartmann number,M 2 and the rotation parameter,K 2. The effects of these parameters on the velocity and magnetic field distributions are studied. For large values ofK 2 andM 2, there arise thin boundary layers on the walls of the channel which may be identified as the Ekman-Hartmann layers.  相似文献   

11.
In this study, the unsteady free convection magnetohydrodynamical flow of a viscous, incompressible, and electrically conducting fluid between two horizontally directed slipping plates is considered. The external magnetic filed is applied uniformly in the y-direction and the fluid is assumed to be of low conductivity so that the induced magnetic field is negligible. So the relevant variables, that is, the velocity and the temperature, depend only on one coordinate, the y-axis. The governing equations of velocity and temperature fields are obtained from the continuity, momentum, and energy equations. The boundary conditions for the velocity are taken in the most general form as Robins type which contain slipping parameter. Moreover, the upper plate is heated exponentially and the lower plate is adiabatic. Finite difference method (FDM) is used to simulate the numerical solutions of the problem in which the explicit forward difference in time variable t and central difference in space variable y is used. Hartmann number, Prandtl number, decay factor, and slipping parameter influences on the flow and temperature are shown graphically. It is seen that as the Hartmann number increases, the velocity magnitude drops, which is the well-known flattening tendency of the MHD flow. Also, the increase in decay factor causes an increase in both the velocity and temperature magnitudes at increasing time levels, but it does not change further close to the steady-state. Furthermore, the convergence and stability conditions of the considered scheme are obtained in terms of Hartmann number, Prandtl number, and the slip length.  相似文献   

12.
The classical finite element convergence analysis relies on the following regularity condition: there exists a constant c independent of the element K and the mesh such that hK/ρKc, where hK and ρK are diameters of K and the biggest ball contained in K, respectively. In this paper, we construct a new, nonconforming rectangular plate element by the double set parameter method. We prove the convergence of this element without the above regularity condition. The key in our proof is to obtain the O(h2) consistency error. We also prove the superconvergence of this element for narrow rectangular meshes. Results of our numerical tests agree well with our analysis.  相似文献   

13.
A particle-fluid suspension model is applied to the problem of pulsatile blood flow through a circular tube under the influence of body acceleration. With the help of finite Hankel and Laplace transforms, analytic expressions for axial velocity for both fluid and particle phase, fluid acceleration, wall shear stress and instantaneous flow rate have been obtained. It is observed that the solutions can be used for all feasible values of pulsatile and body acceleration Reynolds numbers Rp and Rb. Using physiological data, the following qualitative and quantitative results have been obtained. The amplitude Qb of instantaneous flow rate due to body acceleration decreases as the tube radius decreases. The effect of the volume fraction of particle C on Qb is to increase it with increase of C in arteriole and to decrease Qb as C increases in coronary and femoral arteries. The maximum of the axial velocity and fluid acceleration shifts from the axis of the tube to the vicinity of the tube wall as the tube diameter increases. The effect of C on the velocity and acceleration are nonuniform. The wall shear amplitude tb\tau_b due to body acceleration increases as the tube diameter decreases from femoral to coronary and a further decrease in the tube diameter leads to a decrease in tb\tau_b. The effects of C on tb\tau_b are again nonuniform.  相似文献   

14.
In the present note, we have discussed the effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel. The governing equations of motion and energy are simplified using a long wave length approximation. A closed form solution of the momentum equation is obtained by Adomian decomposition method and an exact solution of the energy equation is presented in the presence of viscous dissipation term. The expression for pressure rise is calculated using numerical integration. The trapping phenomena is also discussed. The graphical results are presented to interpret various physical parameter of interest. It is found that the temperature field decreases with the increase in slip parameter L, and magnetic field M, while with the increase in Pr and Ec, the temperature field increases.  相似文献   

15.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

16.
The steady flow in a parallel plate channel rotating with an angular velocity Ω and bounded below by a permeable bed is analysed under the effect of buoyancy force. On the porous bed the boundary condition of Beavers and Joseph is applied and an exact solution of the governing equations is found. The solution in dimensionless form contains four parameters: The permeability parameterσ 2, the Grashof numberG, the rotation parameterK 2 and a dimensionless constantα. The effects of these parameters, specially,σ 2, G andK 2, on the slip velocities and velocity distributions are studied. For largeK 2, there arise thin boundary layers on the walls of the channel.  相似文献   

17.
考虑Hall和离子滑移电流的影响,在旋转系统中研究导电流体非稳定的MHD Couette流动.在小数值磁场Reynolds数假定下,推导出基本的控制方程,使用著名的Laplace变换技术,数值地求解该基本方程.分两种情况:磁场相对于流体或者移动平板固定时,得到速度和表面摩擦力统一的闭式表达式.用图形讨论了问题的不同参数,对速度和表面摩擦力的影响.所得结果显示,主流速度u和次生速度v随着Hall电流而增大.离子滑移电流的增大,也会导致主流速度u的增大,但会使次生速度v减小.还给出了旋转、Hall和离子滑移参数的综合影响,确定了次生运动对流体流动的贡献.  相似文献   

18.
A nonlinear (energy) stability analysis is performed for a rotating magnetized ferrofluid layer heated from below saturating a porous medium, in the stress-free boundary case. By introducing a generalized energy functional, a rigorous nonlinear stability result for a thermoconvective rotating magnetized ferrofluid is derived. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body force. It is found that the nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of linear instability analysis, and thus indicates that the subcritical instabilities are possible. However, it is noted that, in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M 3, medium permeability, D a , and rotation, TA1T_{A_1}, on subcritical instability region has also been analyzed. It is shown that with the increase of magnetic parameter, M 3, and Darcy number, D a , the subcritical instability region between the two theories decreases quickly while with the increase of Taylor number, TA1T_{A_1} , the subcritical region expands. We also demonstrate coupling between the buoyancy and magnetic forces in the presence of rotation in nonlinear energy stability analysis as well as in linear instability analysis.  相似文献   

19.
A numerical solution is developed for the viscous, incompressible, magnetohydrodynamic flow in a rotating channel comprising two infinite parallel plates and containing a Darcian porous medium, the plates lying in the xz plane, under constant pressure gradient. The system is subjected to a strong, inclined magnetic field orientated to the positive direction of the y-axis (rotational axis, normal to the xz plane). The Navier–Stokes flow equations for a general rotating hydromagnetic flow are reduced to a pair of linear, viscous partial differential equations neglecting convective acceleration terms, for primary velocity (u′) and secondary velocity (v′) where these velocities are directed along the x and y axes. Only viscous terms are retained in the momenta equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless ordinary differential equations are solved using a robust numerical method, Network Simulation Methodology. Full details of the numerics are provided. The present solutions are also benchmarked against the analytical solutions presented recently by Ghosh and Pop [Ghosh SK, Pop I. An analytical approach to MHD plasma behaviour of a rotating environment in the presence of an inclined magnetic field as compared to excitation frequency. Int J Appl Mech Eng 2006;11(4):845–856] for the case of a purely fluid medium (infinite permeability). We study graphically the influence of Hartmann number (Ha, magnetic field parameter), Ekman number (Ek, rotation parameter), Hall current parameter (Nh), Darcy number (Da, permeability parameter), pressure gradient (Np) and also magnetic field inclination (θ) on primary and secondary velocity fields. Additionally we investigate the effects of these multiphysical parameters on the dimensionless shear stresses at the plates. Both primary and secondary velocity are seen to be increased with a rise in Darcy number, owing to a simultaneous reduction in Darcian drag force. Primary velocity is seen to decrease with an increase in Hall current parameter (Nh) but there is a decrease in secondary velocity. The study finds important applications in magnetic materials processing, hydromagnetic plasma energy generators, magneto-geophysics and planetary astrophysics.  相似文献   

20.
A nonlinear (energy) stability analysis is performed for a rotating magnetized ferrofluid layer heated from below saturating a porous medium, in the stress-free boundary case. By introducing a generalized energy functional, a rigorous nonlinear stability result for a thermoconvective rotating magnetized ferrofluid is derived. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body force. It is found that the nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of linear instability analysis, and thus indicates that the subcritical instabilities are possible. However, it is noted that, in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M 3, medium permeability, D a , and rotation, , on subcritical instability region has also been analyzed. It is shown that with the increase of magnetic parameter, M 3, and Darcy number, D a , the subcritical instability region between the two theories decreases quickly while with the increase of Taylor number, , the subcritical region expands. We also demonstrate coupling between the buoyancy and magnetic forces in the presence of rotation in nonlinear energy stability analysis as well as in linear instability analysis.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号