首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
The mechanism by which the ribosome catalyze peptide bond formation remains controversial. Here we describe the synthesis of dinucleotides that can be used in kinetic isotope effect experiments to assess the transition state of ribosome catalyzed peptide bond formation. These substrates are the isotopically labeled dinucleotide cytidylyl-(3′-5′)-3′-amino-3′-deoxy-3′-l-phenylalanyl-N6,N6-dimethyladenosine (Cm6ANPhe-NH2) and cytidylyl-(3′-5′)-3′-amino-3′-deoxy-3′-(l-2-hydroxy-3-phenylpropionyl)-N6,N6-dimethyladenosine (Cm6ANPhe-OH). These substrates are active in peptide bond formation and can be used to measure kinetic isotope effects in ribosome catalyzed protein synthesis.  相似文献   

2.
We present a preliminary work for a general method of computing the partition of σ and π electronic effects of a given atom A or substituent R on a given substrate. In this aim, the nuclear charge Z* of a fictitious hydrogen atom H* is fitted in order that the A–H* (or R–H*) bond be purely covalent, i.e. the Mulliken electron population be one electron on H*. We obtain this way entities of the same electronegativity as A or R, thus having a comparable σ effect, without any π effect.

The values of Z* obtained for A–H* diatomic molecules (A=H–Br) exhibit a good linear correlation with the Allred–Rochow scale of electronegativity, as it could be expected on theoretical grounds. The method, applied to R–H* molecules, allows a determination of the electronegativity of a variety of polyatomic R substituents, and provides H*(R) having the same inductive effect as R. These results are discussed by comparison with some previous theoretical and experimental data.

As an example of application, the partition of σ and π contributions of R on the 13C chemical shifts in a series of monosubstituted benzenes RC6H5 has been computed.  相似文献   


3.
Third-order nonlinear optical properties of a disazo dye attached polymer (3R) were evaluated and compared with that of a monoazo (Disperse Red 1) dye attached polymer (2R). The third-order nonlinear optical coefficient (ξ(3)) of the 3R is more than three times higher than that of the 2R over the fundamental wavelengths between 1.5 and 2.0 μm. This is explained by π-conjugation elongation. For both polymers, the ξ(3) dependence on the fundamental wavelength corresponds to their absorption spectra. This is attributable to a three-photon resonance effect. At the 1.50 μm resonant wavelength, the maximum ξ(3) of 4.8 × 10-11 esu is obtained for 3R at a dye content of 17 mol%.  相似文献   

4.
The magnetic susceptibility of 1,1′,2,2′-tetramethylcobaltocene, Co[C5H3(CH3)2]2, and 1,1′-diethylcobaltocene, Co(C5H4C2H5)2, has been studied between 0.99 and 296 K. The data are well reproduced by a calculation of the dynamic Jahn-Teller effect for the 2E1g(a1g2e2g4e1g) ground state of D5d symmetry. A suitable set of parameter values is given by ζ = 100 cm−1, δ = 150 cm−1, kJT = 0.40, κ = 0.70. The magnetism of cobaltocene, Co(C5H5)2, may be described by parameter values of comparable magnitude. The results imply a significantly larger reduction of the spin-orbit coupling parameter ζ due to covalency than of the orbital reduction factor κ.  相似文献   

5.
Triruthenium clusters containing a methylphenylsulfoximido cap or bridge, Ru3(CO)92-H)[μ3-NS(O)MePh] (1), Ru3(CO)102-H)[μ3-NS(O)MePh] (2), Ru3(CO)832-CPhCHBu)[μ3-NS(O)MePh] (3), Ru3(CO)932-PhCCCCHPh)[μ2-NS(O)MePh] (4), and Ru3(CO)72-CO)(μ32-PhCCCCHPh)[μ3-NS(O)MePh] (5) have been examined by EHT and DFT calculations in order to analyze the bonding present in the clusters and to establish the electron counting. They clearly show that a μ3-sulfoximido group is not a 3e ligand as one may be led to think at first sight, but rather acts as a three-orbital/5e system, i.e. should be considered as isolobal to an N---R ligand. Because of some delocalization of its π-type orbitals on the sulfur and oxygen atoms, it is expected to bind slightly less strongly to metal atoms than classical imido ligands. Once in a μ2 coordination mode, the sulfoximido ligand retains a lone pair on its pyramidalized N atom and becomes a two-orbital/3e ligand. It follows that clusters 1, 2, 4 and 5 are electron-precise, whereas cluster 3 is electron deficient with respect to the 18e rule but obeys the polyhedral skeletal electron pair electron-counting rules. Consistently, all the calculated clusters exhibit large HOMO–LUMO gaps and no trace of electron deficiency can be found in their electronic structures.  相似文献   

6.
The resistance of a novel silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric adsorption material (TODGA/SiO2-P) against nitric acid, temperature and γ-irradiation had been investigated. The adsorption property of the treated TODGA/SiO2-P was evaluated by a 3 M HNO3 solution containing 0.01 M Nd(III). It was found that both 3 and 0.01 M HNO3 concentrations did not decrease the stability of TODGA/SiO2-P at 25°C. The quantity of TODGA leaked from TODGA/SiO2-P was equivalent to its solubility in the corresponding HNO3 aqueous solution. The effect of 3 M HNO3 on the leakage of TODGA at 80°C was significantly higher than that in 0.01 M HNO3 as well as in all cases at 25°C. The amount of Nd(III) adsorbed towards the treated TODGA/SiO2-P was determined in the range of 0.143–0.148 mmol/g for the HNO3 concentration effect and 0.142–0.0506 mmol/g for the temperature effect. γ-Irradiation showed a more noticeable destruction effect on TODGA/SiO2-P. The content of TODGA leaked increased with an increase in the γ-irradiation dose (ID) from 1.06 to 3.72 MGy in terms of the linear equation [TODGA]=794.5ID+84.0. The amount of Nd(III) adsorbed onto the irradiated TODGA/SiO2-P decreased rapidly from 0.134 to 0.0438 mmol/g, which was lower than 0.153 mmol/g, the adsorption of fresh TODGA/SiO2-P for Nd(III), according to the equation QNd(III)=−0.0301ID+0.160, showing that a large quantity of TODGA leaked from TODGA/SiO2-P. The adsorbed amount of Nd(III) decreased obviously in this order: the HNO3 concentration effect, temperature effect and γ-irradiation.  相似文献   

7.
The bis(μ3-ethylidyne) tricobalt cluster [(CpCo)33-CCH3)2] (1b) is protonated by trifluoroacetic acid to give the dicobalt edge-protonated cation [H(CpCo)33-CCH3)2]+ [lb + H]+. Protonation of the μ3-ethylidyne tetracobalt cluster hydride [H(CpCo)43-CCH3)] (3) takes place in two consecutive steps. At low temperature [H2(CpCo)43-CCH3)]+ [3 + H]+ is formed first, and is then slowly converted into [H3(CpCo)43-CCH3)]2+ [3 + 2H]2+ by an excess of acid. As judged by the 1H NMR data and the crystal structure of [3 + X]+[(CF3COO)2X] (X = H or D) the endo hydrogens in [3 + H]+ and [3 + 2H]2+ occupy μ3-(Co3) face capping hydridic positions. The cations [1b + H]+ and [3 + H]+ show hydride fluxionality in solution, which in the case of [3 + H]+ can be frozen out on the NMR timescale at low temperature (ΔG (203 K) = 40.8 kJ/mol). The structure of [3 + X]+ [(CF3COO)2X] (X = H or D) was determined by X-ray crystallography. One of the hydrides/deuterides is located on the crystallographic mirror plane, capping a tricobalt face of the cluster cation. The other endo hydrogen atom is believed to be disordered between the other two μ3-(Co3) sites, which are related by space group symmetry. Deuteronation of 3 shows a strong normal kinetic deuterium isotope effect. From the temperature independence of the 1H NMR spectrum of [3 + 2D]2+ a non-fluxional solution structure can be inferred. In all the systems studied, hydridic (μ2- or μ3-) sites are thermodynamically preferred to possible isomeric agostic CoHC or Co2HC sites for the endo hydrogens. Agostic interactions cannot, however, be ruled out in transient intermediates during the course of the protonations.  相似文献   

8.
An investigation of the frontier molecular orbitais ofo- and p-RC6H4NC (R=H, CH3, NO2, F, Cl, CF3, OCH3) was carried out so that a thorough understanding of the intricacies of σ donation and π acceptance could be developed and used to modify subtly the electron density on metal centers. The results of this study-Indicate that the substituent position (ortho vs. para ) does alter the electron density in the ligand appreciably and that substitution of the phenyl ring with the groups indicated has a smaller effect on the σ-donating ability than it does on the π-accepting ability of the isonitrile ligand.

The π-accepting abilities of the isonitrile ligands increase in the order o-, p-CH3OC6H4NC, o-, p-CH3C6H4NC, o-, p-C6H5NC, o-, p-FC6H4NC, o-, p-CF3C6NC, o-, p-ClC6H4NC, o-, p-NO2C6H4NC while the σ-donating ability decreases in this order. The energies of the σ-donor and π-acceptor orbitais are shown to correlate well with observed E values of Cr(RC6H4NC)6 and Mn(RC6H4NC)6+1 complexes. This demonstrates how the theoretical results can be useful in understanding the observed physical properties of isonitrile-metal complexes.  相似文献   


9.
The absorption spectrum of neodymium (III) (Nd3+ doped in poly(methyl methacrylate) was measured. The Nephlauxetic effect was found in the spectrum compared to other spectra of Nd3+ doped in various matrices. The experimental data used, Slater-Condon parameters (F2,F4,F6) and Lander parameter (ζ4f) were calculated by the Taylor series expansion based on the assumption that the energy separation between J-levels of the 4fn-configuration is a function of F2,F4,F6 and ζ4f. The Judd-Ofled intensity parameters (Ω246) were also calculated. Analysis of the Nephlauxetic effect and the parameters variation on the host matrices was carried out.  相似文献   

10.
The spectrum of CD2HF was measured by high-resolution interferometric Fourier-transform IR (FTIR) spectroscopy (apodised instrumental band with:0.004 cm−1 fwhm) between 800 and 1200 cm−1 covering the four lowest fundamentals. A complete rotational analysis using a semi-automatic assignment procedure yields accurate band centres (ν9: 912.2028 cm−1, ν6:964.4994 cm−1, ν5: 1050.5104 cm−1, ν4: 1093.8632 cm−1) and a complete set of first-order Coriolis coupling constants. The most important couplings occur between ν9 and ν6a= 1.069 cm−1, ξc= −0.3535 cm−1) and between ν5 and ν4b= −0.80606 cm−1). The analysis was guided by and compared with results from our ab initio calculations for Coriolis constants and transition moments using CADPAC at TZP/MP2 level.  相似文献   

11.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

12.
The first example of an alkyne-substituted tricarbonyl(η5-cyclohexadienyl)iron(1+) complex has been prepared and the ω directing effect of the phenylethynyl substituent has been demonstrated in nucleophile addition reactions. Addition of NC also occurs at the a position to form an unusual η1, η3-structure.  相似文献   

13.
The acid–base chemistry of some ruthenium ethyne-1,2-diyl complexes, [{Ru(CO)2(η-C5H4R)}22-CC)] (R=H, Me) has been investigated. Initial protonation of [{Ru(CO)2{η-C5H4R}}22-CC)] gave the unexpected complex cation, crystallised as the BF4 salt, [{Ru(CO)2(η-C5H4R}}33-CC)][BF4] (R=Me structurally characterised). This synthesis proved to be unreliable but subsequent, careful protonation experiments gave excellent yields of the protonated ethyne-1,2-diyl complexes, [{Ru(CO)2{η-C5H4R)}2212-CCH)](BF4) (R=Me structurally characterised) which could be deprotonated in high yield to return the starting ethyne-1,2-diyl complexes.  相似文献   

14.
ESR spectra of the radical species derived from 60Co γ-ray irradiation of 1,3,5-cycloheptatriene (1,3,5-CYT) and 1,3-cycloheptadiene (1,3-CYD) in halocarbon matrices have been studied in the temperature range 70–103 K. Ring inversion across the molecular plane occurs in the radical cation 1,3,5-CYT+√ in CCl3CF3, the activation energy being 1.7 kcal/mol. Above 90 K, 1,3,5-CYT+√ is deprotonated thermally in CCl2FCClF2. No dynamical effect has been observed for 1,3-CYD+√.  相似文献   

15.
Gas-phase reaction of C(1)F3S(2)O2O(3)C(4)H2C(5)F3 and F(16) is investigated using DFT method. The geometries of various stationary points and their relative energies are obtained from 6-31+G*, 6-311G**, and 6-311++G** levels. In the SN2(C) reaction leading to the cleavage of the C(4)–O(3) bond, the reaction complex results from attacking of F at a hydrogen atom H11 attached to carbon atom C(4). Afterward, F is attacking the atom C(4) from the backside of the atom O(3) with the help of the neighboring effect, and meanwhile a multi-membered ring, F(16)–H(11)–C(4)–C(5)–F(16), is being formed. The SN2(C) reaction is irreversible. On the contrary, the SN2(S) reaction leading to the cleavage of the S(2)–O(3) bond is reversible, and it is initiated by attacking of F at the atom S(2) from the backside of the atom O(3). The products of the reaction CF3SO3CH2CF3 +F should be, thermodynamically, controlled due to the reversibility of the SN2(S) reaction, and those result, chemospecifically, from the cleavage of the C–O bond. At last, the SCRF calculations confirm that the solvent effect is preferable to the SN2(C) reaction.  相似文献   

16.
A method for low-molecular-mass anion screening is described using a buffer composed of 5-sulfosalicylate (SS) as a visualizing ion, hexadimethrine bromide as an electroosmotic flow modifier and Tris as a pH buffer component, at pH 8.6. All ions with effective mobility higher than 2610−9 m2 s−1 V−1 can be separated within 7.5 min under −30 kV. By using the moderately mobile SS (5410−9 m2 s−1 V−1), not only the sensitivity of the detection is improved due to its high UV absorptivity, but also a smaller overall overloading effect is achieved. Meanwhile, the resolution of the high mobility ions, which is normally critical, remains almost the same as compared to a chromate buffer. With an electrokinetic injection, the limit of detection (LOD) of the common ions is 2–13 nM and the detection range is linear up to 0.5–3 μM. With a hydrostatic injection the LOD is 0.15–1 μM and the detection range is linear up to 25–200 μM. The identification of ions is performed by comparing the mobility of the ions with that of standards, taking the apparent and effective mobility of HCO3, which is normally present in the sample solution, as a reference.  相似文献   

17.
The conformation of N-glycoproteins and N-glycopeptides has been the subject of many spectroscopic studies over the past decades. However, except for some preliminary data, no detailed study on the vibrational spectroscopy of glycosylated peptides has been published until recently.

This paper reports FTIR spectroscopic properties in DMSO and TFE of the N-glycosylated cyclic peptides cyclo[Gly-Pro-Xxx(GlcNAc)-Gly-δ-Ava] 3a and 3b in comparison with data on the non-glycosylated parent peptides cyclo(Gly-Pro-Xxx-Gly-δ-Ava) 2a and 2b [a, Xxx = Asn; b, Xxx = Gln; δ-Ava = NH-(CH2)4-CO] and N-acetyl 2-acetamido-2-deoxy-β- -gluco pyranosylamine (GlcNAc-NHAc, 4). The assignment of amide I band frequencies to conformation is based on ROESY experiments and determination of the temperature coefficients in DMSO-d6 solution. (For the synthesis and NMR characterization of 2a and 3a see Ref. [19].)

Cyclic peptides are expected to adopt folded (β- and/or γ-turn) conformations which may be fixed by intramolecular H-bonding(s). A comparison of the temperature coefficients of the NH protons and amide I band frequencies and intensities suggests that in DMSO there is no significant difference in the backbone conformation and H-bond system of the N-glycosylated models and their parent cyclic peptides. The common feature of the backbone conformation of models 2 and 3 is the predominance of a 1 ← 4 (C10) H-bonded type II β-turn encompassing Pro-Xxx or Pro-Xxx(GlcNAc), respectively. The ROESY connectivities in the Asn(GlcNAc) model (3a) have not been found to reflect intramolecular H-bondings between the peptide and the sugar.

The unique feature of the FTIR spectra in DMSO of the cyclic models is the lack or weakness of low-frequency (< 1640 cm−1) amide I component bands. In TFE the amide I region of the FTIR spectra shows an increased number of components below 1650 cm−1 reflecting a mixture of open and H-bonded β- and γ-turn conformers.

Because of its destabilizing effect upon γ-turns and other weakly H-bonded structures, DMSO decreases the number of backbone conformers. DMSO also destroys side-chain-backbone H-bondings of type C7, C6 or C8. Possible ‘glyco’ C7 H-bondings in GlcNAc-NHAc (4) or in glycopeptides 3a and 3b cannot resist the effect of DMSO either.

The FTIR data in TFE of models 2–4 suggest that the acceptor amide group of strong C7 H-bondings in peptides and glycopeptides absorbs at 1630 ± 5 cm−1 and that of bifurcated H-bondings between 1600–1620 cm−1.  相似文献   


18.
Carbon---hydrogen bond cleavage at the terminal 6-position occurs when hex-5-en-2-one (CH2=CHCH2CH2COMe) oxidatively adds to [Os3(CO)10(MeCN)2] to give [Os3H(μ-CH=CHCH2CH2COMe)(CO)10], which is completely analogous to the simple vinyl complex [Os3H(μ-CH=CH2)(CO)10]. A minor product from the reaction is [Os3(CH3CH=CHCH2COMe)(CO)10], an isomer in which double-bond migration has occurred to give the βγ-unsaturated ketone; stabilisation occurs through chelation and ketone coordination. [Os3H2(CO)10] reacts with CH2=CHCH2CH2COMe in refluxing cyclohexane to give a third isomer, [Os3H(CH3CH2C=CHCOMe)(CO)10], in which further double bond migration has occurred to give the β-unsaturated ketone. Metallation at the β-site gives an Os---C bond as part of a 5-membered chelate ring. Thermolysis of each of the three isomeric decarbonyl species in refluxing cyclohexane or heptane leads to the elimination of an Os(CO)4 group to give the dinuclear compound [Os2H(EtC=CHCOMe)(CO)6] in varying yield. Pathways from γδ to the βγ and finally the β unsaturated ketones may be mapped out.  相似文献   

19.
It has been shown that bis(cyclopentadienyl)(μ-cyclopentadiene)dinickel, (NiCP)2(η-C5H6), and (η5-cyclopentadienyl) (η3-cyclopentenyl)nickel, CpNi(η3-C5H7), are formed in the reaction of nickelocene with methyl-lithium and with 1-phenyl-2-methyl-propenyl-lithium. The compound (NiCp)2(μ-C5H6) can be only formed as a result of the reduction of the cyclopentadienyl ring bonded to the nickel atom whereas the formation of CpNi(η3-C5H7) can be explained by the further hydrogeneration of cyclopentadiene formed in the earlier reaction steps. (NiCp)2(μ-C5H6) has been fully characterised spectrometrically and its X-ray structure determined. It crystallises in the orthorhombic system, space group Pnma, with four molecules per unit cell.  相似文献   

20.
Hydrogenchalcogenido complexes of general composition (η5-C5R5)(CO)3M(EH) (R = H, CH3; M = Cr, Mo, W; E = S, Se) can be obtained by three different routes, sometimes in quite good yields. Thus, the sulfur and selenium derivatives can be synthesized by insertion of the respective elements into the metal-hydrogen bonds of the precursor compounds (η5-C5R5)(CO)3MH. This species also reacts with potassium selenocyanate to yield the hydrogenselenido derivatives (η5-C5R5)(CO)3M(SeH) which can also be obtained by treatment of the methyl complexes (η5-C5R5)(CO)3M(CH3 (M = Mo, W) with HBF4 and Li[SeH]. The corresponding hydrogentellurido compounds are probably formed by these preparative methods but appear to be quickly converted into either the dinuclear tellurium bridge products (μ-Te)[(η5-C5R5)(CO)3M]2 (M = Mo) or into the hydrido complexes (η5-C5R5)(CO)3MH (M= Mo, W) by release of elemental tellurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号