首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Recent results (post-1990) on the synthesis and structures of bis(trimethylsilyl)methyls M(CHR2)m (R = SiMe3) of metals and metalloids M are described, including those of the crystalline lipophilic [Na(μ-CHR2)], [Rb(μ-CHR2)(PMDETA)]2, K4(CHR2)4(PMDETA)2, [Mg(CHR2)(μ-CHR2)], P(CHR2)2 (gaseous) and P2(CHR2)4, [Yb(CHR2)2(OEt2)2] and [{Yb(CR3)(μ-OEt)(OEt2)}2]; earlier information on other M(CHR2)m complexes and some of their adducts is tabulated. Treatment of M(CHR2) (M = Li or K) with four different nitriles gave the X-ray-characterized azaallyls or β-diketinimates , and (LL′ = N(R)C(tBu)CHR, L′L′ = N(R)C(Ph)C(H)C(Ph)NR, LL″ = N(R)C(Ph)NC(H)C(Ph)CHR, R = SiMe3 and Ar = C6H3Me2-2,5). The two lithium reagents were convenient sources of other metal azaallyls or β-diketinimates, including those of K, Co(II), Zr(IV), Sn(IV), Yb(II), Hf(IV) and U(VI)/U(III). Complexes having one or more of the bulky ligands [LL′], [L′L′], [LL], [LL″], [L″L], [LL] and [{N(R)C(tBu)CH}2C6H4-2]2− are described and characterized (LL = N(H)C(Ph)C(H)C(Ph)NH, L″L = N(R)C(tBu)C(H)C(Ph)NR, LL = N(R)C(tBu)CHPh). Among the features of interest are (i) the contrasting tetrahedral or square-planar geometry for and , respectively, and (ii) olefin-polymerization catalytic activity of some of the zirconium(IV) chlorides.  相似文献   

2.
The coordinatively unsaturated cluster [Pt33-CO)(μ-dppm)3]2+ (1, dppm = Ph2PCH2PPh2) reacts with Na+[M(CO)5] to give the mixed metal clusters [Pt3{M(CO)3}(μ-dppm)3]+ (M = Re, 2; Mn, 3). The new clusters are characterized by spectroscopic methods and, for M = Re, by an X-ray structure determination. The Pt3Re core in 2 is tetrahedral with particularly short metal-metal distances.  相似文献   

3.
The oxidation of Cp2MCl2 (M= Mo, W) with perfluortriazinium tetrafluoroborate, [(FCN)3F]+[BF4], in the presence of a flouride ion acceptor (BF3 or PF5) in SO2 solution yielded the cationic metallocene complexes [Cp2MCl 2]2+[BF4] or [Cp2MCl2] 2+[BF4][PF6] (M = Mo, W), respectively. In these reactions, for the first time the perfluortriazinium cation has proved to be easy to handle and a useful oxidizer in organometallic chemistry. The oxidizer strength of three fluorotriazinium cations, [(XCN)3F]+ (X = F, Cl, H), has been computed ab initio (HF/6 − 31 + G) and calibrated on literature data which were obtained by local density functional calculations. It was anchored to its F+ zero point by an experimental value for KrF+. ab]Die Oxidation von Cp2MCl2 mit (M = MO, W) Perfluortriaziniumtetrafluoroborat, [(FCN)3F]+[BF4], in Anwesenheit eines Fluoridionenakzeptors (BF3 oder PF5) führte in SO2-Lösung zur Bildung der kationischen Metallocen-Komplexe [Cp2MCl2+]2+[BF4]2 bzw. [Cp2MCl2]2+[BF4] [PF6] (M = Mo, W). In diesen Reaktionen konnte erstmals gezeigt werden, daß Perfluortriazinium-Kationen einfach zu handhabende und nützliche Oxidationsmittel im Bereich der metallorganischen Synthese darstellen. Das (Mdationsvermögen von drei Fluorotriazinium-Kationen, [(XCN)3F]+(X = F, Cl, H), wurde ab initio berechnet (HF/6 − 31 + G) und mit Hilfe von Literaturdaten, die mittels local density functional-Berechnungen erhalten und am experimentellen Wert von KrF + bezüglich des F+ Nullpunktes verankert wurden, kalibriert.  相似文献   

4.
An unexpected trimanganese(I) tetrathiolate-bridged complex, [Mn3(CO)9(μ-SC6H5)4], with an incomplete cubane structure, was obtained by thermal reaction of [Mn2(CO)10] with [Mo(η5-C5H5)2(SC6H5)2]. The structure, established by single-crystal X-ray diffraction studies, shows the cation, [Mo(η5-C5H5)2(H)CO]+, directed towards the vacant site of the cubane structure. Possible routes by which the anion and the cation could be formed are discussed.  相似文献   

5.
CpCo(CO)2 is oxidised by [Cp2Fe]BF4 (Cp = C5H5) in the presence of neutral ligands L to give the dications [CpCoL3]2+ (L = SMe2, S(n-C4H9)2, PMe3, C5H5N, MeCN; Me = CH3). In [CpCo(SMe2)3]2+, sulfane ligands are substituted by neutral ligands L, L---L and L---L---L, to give the complexes [CpCoL3]2+ (L = SeMe2, TeMe2, PMe3, P(OMe)3, AsMe3, SbMe3, t-C4H9NC, C5H5N, MeCN), [Cp-Co(L---L)SMe2]2+ (L---L = R2P(CH2)nPR2, n = 1, 2, R = C6H5; bipyridine, o-phenanthroline, neocuproin) and [CpCo(L---L---L)]2+ (L---L---L = RP(CH2CH2PR2)2, R = C6H5). The dications react with iodide resulting in the monocations [CpCoL2I]+ and [CpCo(L---L)I]+. Azacobaltocinium cations [CpCo(C4R2H2N)]+ (R = H, CH3) are obtained by reaction of [CpCo(SMe2)3]2+ with metal pyrrolides.  相似文献   

6.
The anion [Fe4S3(NO)7] undergoes slow exchange with labelled nitrite [15NO2] to yield a product [Fe4S3(14NO)(15NO)6] in which complete isotopic exchange has occurred at the basal Fe(NO)2 groups, but with no exchange at the apical Fe(NO) group. The neutral Fe4S4(NO)4 reacts rapidly with [15NO2 to give fully exchanged [Fe4S3(15NO)7], and it is proposed that the conversion proceeds by fragmentation, followed by complete isotopic exchange and rapid reassembly. The binuclear anion [Fe2S2(NO)4]2− also yields, with [15NO2]2− in CD2Cl2 solution, the fully exchanged [Fe4S3(15NO)7], and a mechanism involving successive fragmentation, exchange and reassembly steps is proposed; however in aqueous solution, a clean exchange reaction occurs to give [Fe2S2(15NO)4]2−. Neutral binuclear esters Fe2(SR)2(NO)4 (R = Me, Et, or Ph) with [14NO2] yield the mononuclear paramagnetic [Fe(14NO)2(14NO2)2], and with [15NO2] the analogous [Fe(15NO)2(15NO2)2].  相似文献   

7.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

8.
The chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes is reviewed. The complex [{(η5-C5Me5)RhCl2}2] (1a) reacted with MeLi to give, after oxidative work-up, blood-red cis-[{(η5-C5Me5)Rh(μ-CH2)}2(Me)2], 2. This has the two rhodiums in the +4 oxidation state (d5), and linked by a metal-metal bond (2.620 Å). Trans-2 was formed on isomerisation of cis-2 in the presence of Lewis acids, or by direct reaction of 1a with Al2Me6, followed by dehydrogenation with acetone. The Rh-methyls in [{(η5-C5Me5)Rh(μ-CH2)}2(Me)2] were readily replaced under acidic conditions (HX) to give [{(η5-C5Me5)Rh(μ-CH2)}2(X)2] (X = Cl, Br or I); these latter complexes reacted with a variety of RMgX to give [{(η5-C5Me5)Rh(μ-CH2)}2(R)2] (R = alkyl, Ph, vinyl, etc.). Trans-2 also reacted with HBF4 in the presence of L to give first [{(η5-C5Me5)Rh(μ-CH2)}2(Me)(L)]+ and then [{(η5-C5Me5)Rh(μ-CH2)}2(L)2]2+ (L = MeCN, CO, etc.). The {(η5-C5Me5)Rh(μ-CH2)}2 core is rather kinetically inert and also forms a variety of complexes with oxy-ligands, both cis-, e.g. [{(η5-C5Me5)Rh(μ-CH2)}2(μ-OAc)]+ and trans-, such as [(η5-C5Me5)Rh(μ-CH2)}2(H2O)2]2+. The complexes [{(η5-C5Me5)Rh(μ-CH2)}2(R)L]+ (R = Me or aryl) in the presence of CO, or [{(η5-C4Me5)Rh(μ-CH2)}2(R)2] (R = Me, Ph or CO2Me) in the presence of mild oxidants, readily yield the C---C---C coupled products RCH=CH2. The mechanisms of these couplings have been elucidated by detailed labelling studies: they are more complex than expected, but allow direct analogies to be drawn to C---C couplints that occur during Fischer-Tropsch reactions on rhodium surfaces.  相似文献   

9.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

10.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

11.
Both [Rh4(CO)12] and [Rh6(CO)16] disproportionate in pyridine to cis-[Rh(CO)2(py)2]+ and [Rh5(CO)13(py)2]. In the same solvent, cis-[Rh(CO)2(py)2]+ is reduced by CO/H2O to [(py)2H][Rh5(CO)13-(py)2], which has been structurally characterized.  相似文献   

12.
The tetrathiomolybdate ion [MoS4]2− reacts in DMF solution with Roussin esters Fe2(SR)2(NO)4 (R = Me, Et, n-Pr, i-Pr, n-Bu,t-Bu, n-C5H11) to yield the paramagnetic iron nitrosyls [Fe(NO)2(SR)2] (1), [Fe(NO)2(S2MoS2] (2) and [Fe(NO)(S2MOS2)2] (3). The new complexes (2) and (3) have been characterized by EPR spectroscopy and the assignment to them of constitutions based respectively upon tetrahedral and square pyramidal iron is supported by EHMO calculations. Fe2(SPh)2(NO)4 with [MoS4]2− yields only [Fe(NO)2(SPh)2], and preformed (3) reacts with PhS to give firstly EPR-silent species, and then [Fe(NO)2(SPh)2]. The mononitrosyl (3) can also be formed by reaction of [MoS4]2− with [Fe4S3(NO)7], Fe4S4(NO)4, or Fe2I2(NO)4.  相似文献   

13.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

14.
In order to understand the nature of the putative cationic 12-electron species [M(η51-C5R4SiMe2NR′)R″]+ of titanium catalysts supported by a linked amido-cyclopentadienyl ligand, several derivatives with different cyclopentadienyl C5R4 and amido substituents R′ were studied systematically. The use of tridentate variants (C5R4SiMe2NCH2CH2X)2− (C5R4=C5Me4, C5H4, C5H3tBu; X=OMe, SMe, NMe2) allowed the NMR spectroscopic observation of the titanium benzyl cations [Ti(η51-C5Me4SiMe2NCH2CH2X)(CH2Ph)]+. Isoelectronic neutral rare earth metal complexes [Ln(η51-C5R4SiMe2NR′)R″] can be expected to be active for polymerization. To arrive at neutral 12-electron hydride and alkyl species of the rare earth metals, we employed a lanthanide tris(alkyl) complex [Ln(CH2SiMe3)3(THF)2] (Ln=Y, Lu, Yb, Er, Tb), which allows the facile synthesis of the linked amido-cyclopentadienyl complex [Ln(η51-C5Me4SiMe2NCMe3)(CH2SiMe3)(THF)]. Hydrogenolysis of the linked amido-cyclopentadienyl alkyl complex leads to the dimeric hydrido complex [Ln(η51-C5Me4SiMe2NCMe3)(THF)(μ-H)]2. These complexes are single-site, single-component catalysts for the polymerization of ethylene and a variety of polar monomers such as acrylates and acrylonitrile. Nonpolar monomers such as -olefins and styrene, in contrast, give isolable mono-insertion products which allow detailed studies of the initiation process.  相似文献   

15.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

16.
Three novel uranyl complexes with organic phosphine oxide ligands and bridging fluorides have been synthesised and structurally characterised. In [ UO2(μ-F)(TPPO)3 2][BF4]2 · nC6H14, 1, and [ UO2(-μF)(TBPO)3 2][BF4]2 2, (where TPPO and TBPO are triphenylphosphine oxide and tri-n-butylphosphine oxide, respectively) two UO2 2+ moieties are bridged by two fluorides with three additional terminal PO donor ligands coordinated to each uranium centre. The dicationic complexes are both charge balanced by two uncoordinated tetrafluoroborate anions. In the related structure, [UO2(μ-F)(F)(DPPMO2)]2 · 2MeOH (3), terminal fluoride is also coordinated to both uranyl centres (where DPPMO2 = bis(diphenylphosphine oxide)methane). All three complexes were prepared during attempted syntheses of complexes with tetrafluoroborate directly coordinated to uranium. It is clear from these results that the fluorophilicity of UO2 2+ causes the abstraction of fluoride from [BF4], with the weakly coordinating anion only present as a counter cation in 1 and 2, and absent completely in 3.  相似文献   

17.
The reaction of the labelled carborane ligand [3-Et-7,8-Ph2-7,8-nido-C2B9H8]2− with a source of {Pt(PMe2Ph)2}2+ affords non-isomerised 1,2-Ph2-3,3-(PMe2Ph)2-6-Et-3,1,2-closo-PtC2B9H8 (1). The analogous reaction between [3-F-7,8-Ph2-7,8-nido-C2B9H8]2− and {Pt(PMe2Ph)2}2+ yields 1,8-Ph2-2,2-(PMe2Ph)2-4-F-2,1,8-closo-PtC2B9H8 (3). Compound 1 has a heavily slipped structure (Δ 0.72 Å), which to some degree obviates the need for C atom isomerisation. However, that it is a kinetic product of the reaction is evident from the fact that it reverts to isomerised 1,8-Ph2-2,2-(PMe2Ph)2-4-Et-2,1,8-closo-PtC2B9H8 (2) slowly at room temperature but more rapidly with gentle warming. The heteroatom and labelled-B atom positions in the isomerised compounds 2 and 3 may be explained most simply by the rotation of a CB2 face of an intermediate based on the structure of 1. Compounds 1–3 were characterised by a combination of spectroscopic and crystallographic techniques.  相似文献   

18.
Reaction of [Pt25-C5Me5)2(η-Br)3]3+(Br)3 with C5R5H (R = H,Me) in the presence of AgBF4 gives the first platinocenium dications, [Pt(η5-C5Me5)(η5-C5R5)]2+(BF4 )2. On electrochemical reduction, [pt(η5-C5Me5)2]2+ yields [Pt(η4-C5Me5H)(η2-C5Me5)]+ BF4. kw]Cyclopentadienyl; Metallocenes; Platinum; Electrochemistry  相似文献   

19.
Reaction of cis-[Ptph2(SMe2)2] with Me2PCH2PMe2 (dmpm) gave cis-[PtPh2(dmpm-P)2] (1) or cis,cis-[Pt2Ph4(μ-dmpm)2] (2) and reaction of 1 with [Pt2Me4(μ-SMe2)2] gave cis,cis-[Ph2Pt(μ-dmpm)2PtMe2] (3). Reaction of 1 with trans-[PtClR(SMe2)2] gave cis,trans-[Ph2Pt(μ-dmpm)2PtClR], R = Me (5) or Ph (6), and in polar solvents, these isomerized to give [Ph2Pt(μ-dmpm)2PtR]+Cl. When R = Me, further isomerization via the phenyl group transfer gave [PhMePt(μ-dmpm)2PtPh]+Cl. Oxidative addition of methyl iodide occurred reversibly at the cis-[PtMe2P2 unit of 3 to give cis,fac-[Ph2Pt(μ-dmpm)2PtIMe3] but complex 2 failed to react with MeI. A comparison with similar known complexes of Ph2PCH2PPh2 (dppm) is made and differences are attributed primarily to the lower steric hindrance of dmpm.  相似文献   

20.
The perphenylmetallocene complexes (η5-C5Ph5)2W (1), [(η5-C5Ph5)2W]+I3 (1+I3), (η5-C5Ph5)2Mo (2) and [(η5-C5Ph5)2Mo]+I3 (2+I3) have been prepared. Hydrogenation of 1 in THF produces (η5-C5Ph5)2WH2 (4), while (η5-C5Ph5)2WHCl (3) is afforded in 1,2-dichloroethane solvent. Carbonylation of 1 produces (η5-C5Ph5)2W(CO) (5). Treatment of 1 with the strong acid CF3SO3H leads to the dicationic species [(η5-C5Ph5)2W]+2[CF3SO3]2 (1+2Tf2) after crystallization. The structures of 2+I3 and 1+2Tf2 have been determined by an X-ray diffraction study. The magnetic susceptibility study indicates a 3E2g ground-state for 1 and 2, and a 4A2g ground-state for 1+ and 2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号