首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Das C  Zhang J  Denslow ND  Fan ZH 《Lab on a chip》2007,7(12):1806-1812
Two-dimensional (2D) protein separation is achieved in a plastic microfluidic device by integrating isoelectric focusing (IEF) with multi-channel polyacrylamide gel electrophoresis (PAGE). IEF (the first dimension) is carried out in a 15 mm-long channel while PAGE (the second dimension) is in 29 parallel channels of 65 mm length that are orthogonal to the IEF channel. An array of microfluidic pseudo-valves is created for introducing different separation media, without cross-contamination, in both dimensions; it also allows transfer of proteins from the first to the second dimension. Fabrication of pseudo-valves is achieved by photo-initiated, in situ gel polymerization; acrylamide and methylenebisacrylamide monomers are polymerized only in the PAGE channels whereas polymerization does not take place in the IEF channel where a mask is placed to block the UV light. IEF separation medium, carrier ampholytes, can then be introduced into the IEF channel. The presence of gel pseudo-valves does not affect the performance of IEF or PAGE when they are investigated separately. Detection in the device is achieved by using a laser induced fluorescence imaging system. Four fluorescently-labeled proteins with either similar pI values or close molecular weight are well separated, demonstrating the potential of the 2D electrophoresis device. The total separation time is less than 10 minutes for IEF and PAGE, an improvement of 2 orders of magnitude over the conventional 2D slab gel electrophoresis.  相似文献   

2.
We studied the effects of fluorescent labeling on the isoelectric points (pI values) of proteins using capillary isoelectric focusing with laser-induced fluorescence detection (cIEF-LIF). Specifically, we labeled green fluorescent protein (GFP) from the jellyfish Aequorea victoria with the fluorogenic dye 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ). cIEF-LIF was used to monitor the native fluorescence of GFP and showed pI changes in GFP's FQ-labeled products. Multiple labeling of GFP with FQ produced a series of products with pI values shifted towards a low pH. We verified cIEF-LIF results with traditional slab gel IEF. Our cIEF-LIF technique can routinely detect 10(-11) M of FQ-labeled protein, whereas traditional slab gel IEF with silver stain detection gives detection limits of 10(-7) M in the same samples.  相似文献   

3.
Das C  Fan ZH 《Electrophoresis》2006,27(18):3619-3626
This paper describes the investigation on the effects of separation length and voltage on IEF in a plastic microfluidic device. A LIF, whole-channel imaging detection (WCID) system was developed to monitor proteins while they were moving under an electric field. IEF was carried out in a separation medium consisting of carrier ampholytes and a mixture of linear polymers (hydroxyethylcellulose and hydroxypropylcellulose). We found that the IEF separation resolution is essentially independent of separation length when the same voltage is applied, which agrees with the theory. This result supports the notion that IEF in a microfabricated device leads to more rapid analysis without sacrificing the resolving power. A higher separation voltage also brought about more rapid analysis and superior separation resolution. IEF of two proteins (green fluorescence protein and R-phycoerythrin) was achieved in 1.5 min when 500 V was applied across a 1.9-cm channel. We found that a linear relationship exists between the focusing time and the inverse of the electrical field strength. In addition, we confirmed the phenomenon in which the pH gradient was compressed to the middle of a channel, and we found that the relative amount of the gradient compression decreased with the channel length.  相似文献   

4.
We have developed novel protein gel electrophoresis techniques, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing (IEF) in short microchannels (approximately millimeters) that take less than a minute. A photopatterning technique was used to cast in situ crosslinked polyacrylamide gel in a microchannel to perform SDS-PAGE. A fluorescent protein marker sample (Mr range of 20,000-200,000) was separated in less than 30 s in less than 2 mm of channel length. Crosslinked polyacrylamide gel, patterned in channels using UV light, provides higher sieving power and sample stacking effect, therefore yielding faster and higher-resolution separation in a chip. IEF of proteins was also achieved in a microchannel, and several proteins were focussed within tens of seconds in mm-length channels. As resolution in IEF is independent of separation distance, focusing in ultra-short channels results in not only faster separation but also more concentrated bands potentially allowing detection of low-concentration species.  相似文献   

5.
Stastná M  Slais K 《Electrophoresis》2005,26(18):3586-3591
Two-dimensional gel isoelectric focusing (2-D gel IEF) is presented as the combination of the same separation method used consecutively in two directions of the same gel. In this new method, after completion of IEF process in the first dimension the gel was cut into the separate strips, each containing selected analytes together with the appropriate part of the original broad pH gradient, and the strips were rotated by 90 degrees (with regard to the first IEF) and left to diffuse overnight. After diffusion the strips were subjected to the second IEF. During the second IEF, the corresponding narrow part of pH gradient in each strip was restored again, however, now along the strip. The progress of the separation process can be monitored visually by using colored low-molecular-weight isoelectric point (pI) markers loaded into the gel simultaneously with proteins. The unique properties of IEF, focusing and resolution power were enhanced by using the same technique twice. Two forms of beta-lactoglobulin (pI values 5.14 and 5.31, respectively) non-separated in the first IEF were successfully separated in the second dimension at relatively low voltage (330 V) with the resolution power comparable to the high-resolution gels requiring the high voltage during the run and long separation time. Glucose oxidase loaded as diluted solution into ten positions across the gel was finally focused into a single band during 2-D gel IEF. Since the first and second IEF are carried out on the same gel, no losses and contamination of analyte occur. The suggested method can be used for separation/fractionation of complex biological mixtures, similarly as other multidimensional separation techniques applied in proteomics, and can be followed by further processing, e.g., mass spectrometry analysis. The focusing properties of IEF could be useful especially in separation of mixtures, where components are at low concentration levels.  相似文献   

6.
Huang T  Pawliszyn J 《Electrophoresis》2002,23(20):3504-3510
A simple microfabrication technique for the preparation of a tapered microchannel for thermally generated pH gradient isoelectric focusing (IEF) has been demonstrated. The tapered channel was cut into a plastic sheet (thickness was 120 microm), and the channel was closed by sandwiching the plastic sheet between two glass microscope slides. The length of the microchannel was 5 cm. The width of the separation channel was 0.4 mm at the narrow end and 4 mm at the wide end. The channel was coated with polyacrylamide to prevent electroosmotic flow (EOF) during focusing. Two electrolyte vials were mounted on top of each end of the channel with the wide end of the channel connected to the cathodic vial and the narrow to the anodic vial. The feasibility of the thermally generated pH gradient in a tapered channel was demonstrated. Important parameters that determined the feasibility of using a thermally generated pH gradient in a tapered channel were analyzed. Parameters to be optimized were control of EOF and hydrodynamic flow, selection of power supply mode and prevention of local overheating and air bubble formation. Tris-HCl buffer, which has a high pK(a) dependence with temperature, was used both to dissolve proteins and as the electrolyte. The thermally generated pH gradient separation of proteins was tested by focusing dog, cat and human hemoglobins with a whole column detection capillary IEF (CIEF) system.  相似文献   

7.
The transitional isoelectric focusing (IEF) process (the course of pH gradient formation by carrier ampholytes (CAs) and the correlation of the focusing time with CA concentration) were investigated using a whole-column detection capillary isoelectric focusing (CIEF) system. The transitional double-peak phenomenon in IEF was explained as a result of migration of protons from the anodic end and hydroxyl ions from the cathodic end into the separation channel and the higher electric field at both acidic and basic sides of the separation channel. It was observed that focusing times increase logarithmically with CA concentration under a constant applied voltage. The correlation of focusing time with CA concentration was explained by the dependence of the charge-transfer rate on the amount of charged CAs within the separation channel during focusing.  相似文献   

8.
A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.  相似文献   

9.
A rapid procedure of isoelectric focusing (IEF) of proteins in polyacrylamide rod gels (i.d., 1.1 mm; length, 7.5 cm) is described. The time required for IEF can be reduced to 0.5 h by using high voltages up to 3000 V in the presence or absence of urea in the gels. When used as the first dimension of a two-dimensional technique for IEF sodium dodecyl sulphate electrophoresis, high voltage IEF gives smaller protein spots on the second dimension gel, associated with an increase in resolution. The method has been tested by a two-dimensional separation of an eye sample of the goodeid fish Xenotoca eiseni.  相似文献   

10.
Li Y  DeVoe DL  Lee CS 《Electrophoresis》2003,24(1-2):193-199
Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10-100 fold in comparison with conventional IEF.  相似文献   

11.
Mao Y  Zhang X 《Electrophoresis》2003,24(18):3289-3295
A comprehensive two-dimensional (2-D) separation system, coupling capillary reverse-phase liquid chromatography (cRPLC) to capillary isoelectric focusing (CIEF), is described for protein and peptide mapping. cRPLC, the first dimension, provided high-resolution separations for salt-free proteins. CIEF, the second dimension with an orthogonal mechanism to cRPLC afforded excellent resolution capability for proteins with efficient protein enrichment. Since all sample fractions in cRPLC effluents could be transferred to the CIEF dimensions, the combination of the two high-efficiency separations resulted in maximal separation capabilities of each dimension. Separation effectiveness of this approach was demonstrated using complex protein/peptide samples, such as yeast cytosol and a BSA tryptic digest. A peak capacity of more than 10 000 had been achieved. A laser-induced fluorescence (LIF) detector, developed for this system, allowed for high-sensitive detection, with a fmol level of peptide detection for the BSA digest. FITC and BODIPY maleimide were used to tag the proteins, and the latter was found better both for separation and detection in our 2-D system.  相似文献   

12.
Continuous flow zone electrophoresis (CFE) and recycling isoelectric focusing (RIEF) are two of the alternative formats for fluid phase preparative isolation of biological products in liquid separation media. The McDonnell Douglas CFE system has been used for both ground-based and microgravity separations. The ground-based McDonnell Douglas CFE and RIEF were compared for the ability to resolve mixtures of proteins with known charge differences. Mixtures of 1) cytochrome c, myoglobin, and ovalbumin or 2) beta-lactoglobulin and ovalbumin were used to evaluate the resolving capabilities of CFE and RIEF. Following separation, fractions were analyzed by determining absorbance at 280 nm and by analytical isoelectric focusing (IEF) using Coomassie Brilliant Blue or silver staining to detect focused proteins. Both CFE and RIEF apparently separated the components of both mixtures into individual peaks, separated by fractions which contained little or no detectable protein. Coomassie-stained analytical IEF gels supported this finding. However, when separated proteins were analyzed by silver staining of the analytical gels, the separation of ovalbumin from beta-lactoglobulin by CFE was not complete. Ovalbumin was free of beta-lactoglobulin but beta-lactoglobulin was contaminated by trace amounts of ovalbumin. RIEF clearly separated each protein with no detectable contamination. These data demonstrate the superiority of RIEF over CFE for resolution of protein mixtures having only minor charge differences. RIEF may be more efficient due to the documented electrodissociation of noncovalent protein:protein complexes which occurs during RIEF separations.  相似文献   

13.
The conductivity properties of natural pH gradient created by carrier ampholytes were studied during the process of isoelectric focusing (IEF). IEF was performed in capillaries (10-30 mm long) or in microchips with the same channel length. A 10-30x reduction of the conductivity of the separation medium was observed during the establishment of pH gradient. Results obtained using different IEF voltages indicate that there is a nonlinear relationship between the conductivity of an established pH gradient and the applied electric field. Our theoretical analysis using a simplified model generated values that reasonably agree with the experimental data. In addition, we found that above a certain electric field ( approximately 300 V/cm), resolution does not increase with the applied voltage as predicated; we observed band-broadening and gel breakdown. The approach presented in this work can be used for optimization of the IEF separation and judicious selection of IEF conditions.  相似文献   

14.
Investigation of isoelectric focusing (IEF) kinetics has been performed to provide the theoretical basis for miniaturization of classical IEF in immobilized pH-gradients. Standard IEF demands colinearity of the electric field and pH-gradient directions (serial devices). It is shown that the IEF separation process based on a continuous, serial pH gradient is incompatible with miniaturization of separation devices. The new realization of the IEF device by a parallel IEF chip is suggested and analyzed. The main separation tool of the device is a dielectric membrane (chip) with conducting channels that are filled by Immobiline gels of varying pH. The membrane is held perpendicular to the applied electric field and proteins are collected (trapped) in the channels whose pH are equal to the pI of the proteins. The pH value of the surrounded aqueous solution is not equal to any channel's pH. The fast particle transport between different channels takes place due to convection in the aqueous solution. The new device geometry introduces two new spatial scales to be considered: the scale of transition region from a solution to the gel in a channel and a typical channel size. The corresponding time scales defining the IEF process kinetics are analyzed and scaling laws are obtained. It is shown both theoretically and experimentally that parallel IEF accelerates the fractionation of proteins by their pI down to several minutes and enables possible efficient sample collection and purification.  相似文献   

15.
比较分析了强阳离子交换(SCX)与等电聚焦(IPG-IEF)技术在磷酸化蛋白质组学中的应用。采用3种标准磷酸化蛋白对SCX与IPG-IEF两种技术对磷酸化肽段富集的有效性进行考察。以HepG2细胞为复杂样本,考察SCX与IPG-IEF在实际样本中的应用情况。对SCX与IPG-IEF技术在18O标记的磷酸化蛋白质组定量研究中的应用情况进行考察。蛋白鉴定采用高准确度、高灵敏度、高分辨率的LTQ-FTICR-MS/MS质谱仪。实验表明:SCX和IPG-IEF在大规模磷酸化肽段分离过程中均有效;在复杂样本中,SCX技术的分离效果优于IPG-IEF;IPG-IEF的重复性好于SCX;在磷酸化蛋白质组定量分析结果表明,IPG-IEF技术的稳定性优于SCX。本研究为根据不同实验目的而选择适当的磷酸化蛋白质组预分离技术提供了有用信息。  相似文献   

16.
Low-molecular-mass fluorescent compounds excitable in the near UV region with suitable acidobasic and electrophoretic properties are suggested as isoelectric point (pI) markers for isoelectric focusing (IEF) with UV photometric and UV excited fluorometric detection. The experimental set-up of capillary IEF with UV excited fluorometric detection and properties of new UV-induced fluorescent pI markers are given. The pI values of 18 new pI markers determined independently of IEF methods range from 2.1 to 10.3. The examples of separation of new pI markers together with derivatized proteins by capillary IEF with photometric or fluorometric detection are presented.  相似文献   

17.
Two-dimensional gel electrophoresis practitioners have long waited for a fully automated system. This article presents an integrated platform that is capable of complete automation from sample introduction to spots detection. The strip gel for the first dimensional separation is fixed on the edge of a discrete planar stage before separation. A pair of platinum pin electrodes for isoelectric focusing (IEF) makes contact from underneath the stage. IEF is performed directly after rehydration and protein loading. After the first dimensional separation, sodium dodecyl sulfate (SDS) equilibration is done on the same stage without moving the gel. The IEF stage is then moved horizontally to couple with a precast second dimensional gel. The <0.5 mm gap between the two gels is filled with poly (ethylene oxide) solution. After SDS-polyacrylamide gel electrohporesis separation, a charge-coupled device camera is used to detect spots via protein native fluorescence excited by a Hg (Xe) lamp with the gel inside the running cell. Potential for full automation is demonstrated with 0.5 microg of Escherichia coli proteins on this miniaturized platform. More than 240 spots are detected in a total experiment time of <2.5 h.  相似文献   

18.
A new coupling of electrochemistry with mass spectrometry (MS) using probe electrospray ionization (PESI) is presented. Due to the high salt tolerance of PESI, the detection of electrochemical reaction products in room‐temperature ionic liquids (RTILs) is realized for the first time. Furthermore, PESI‐MS allows the analysis of electrochemical reaction products on different or multiple electrode surfaces. In addition, peptides and proteins fractionated through isoelectric focusing (IEF) in the presence of an external electric field can also be directly analyzed by using PESI‐MS, suggesting a new and rapid characterization means for the IEF technique. This study reveals the versatility of EC/PESI‐MS, which could have an impact in electrochemistry and bioanalysis fields.  相似文献   

19.
Micellar affinity gradient focusing (MAGF) is a microfluidic counterflow gradient focusing technique that combines the favorable features of MEKC and temperature gradient focusing. MAGF separates analytes on the basis of a combination of electrophoretic mobility and partitioning with the micellar phase. A temperature gradient is produced along the separation channel containing an analyte/micellar system to create a gradient in interaction strength (retention factor) between the analytes and micelles. Combined with a bulk counterflow, species concentrate at a unique point where their total velocity sums to zero. MAGF can be used in scanning mode by varying the bulk flow so that a large number of analytes can be sequentially focused and passed by a single detection point. In this work, we develop a bilinear temperature gradient along the separation channel that improves separation performance over the conventional linear designs. The temperature profile along the channel consists of a very sharp gradient used to preconcentrate the sample followed by a shallow gradient that increases resolution. We fabricated a hybrid PDMS/glass microfluidic chip with integrated micro heaters that generate the bilinear profile. Performance is characterized by separating several different samples including fluorescent dyes using SDS surfactant and pI markers using both SDS and poly-SUS surfactants as the micellar phase. The new design shows a nearly two times improvement in peak capacity and resolution in comparison to the standard linear temperature gradient.  相似文献   

20.
The use of microfluidic chip-based two-dimensional separation holds great promise in the proteomics field, given its portability, simplicity, speed, efficiency, and throughput. However, inclusion of sodium dodecyl sulfate, reported to be necessary for increasing protein-resolving capability, was also accompanied by the loss of both protein conformation and biological function. Here, we describe separation of native proteins by introducing blue native gel electrophoresis into isoelectric focusing and gel electrophoresis (IEF/CGE)-coupled protein two-dimensional microfluidic chip electrophoresis. After assessing the influence of various experimental conditions, the best separation ability and reproducibility of blue native IEF/CGE (IEF/BN-CGE) chip electrophoresis achieved until now were demonstrated no matter whether with a simple simulated mixture or with a complex mixture of total Escherichia coli proteins. Finally, instead of theoretical calculations, the image analysis technique was also used for the first time to quantitatively evaluate the actual peak capacities of chip electrophoresis. According to the number of features abstracted in the electrophoresis patterns, the superiority of the IEF/BN-CGE two-dimensional microfluidic chip electrophoresis was then exhibited quantitatively. The high native protein separation performance makes this established chip electrophoresis method possible for further application in widely needed drug screening, analysis of bio-molecular function, and assays of protein–protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号