首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
双极室联合处理啤酒废水的微生物燃料电池   总被引:1,自引:0,他引:1  
构建了双极室连续流联合处理废水的微生物燃料电池(MFC), 该MFC阳极室的出水直接用于阴极室的进水, 利用阴极室的好氧微生物进一步降解有机物. 以啤酒废水作底物, 研究了该MFC的产电性能和废水处理效果. 结果表明, 采用双极室连续流MFC可以大大提高废水的处理效果, 对啤酒废水化学需氧量(COD)的总去除率可达92.2%~95.1%, 其中阳极室中COD去除率为47.6%~56.5%. MFC的开路电压为0.451 V, 最大输出功率为2.89 W/m3. 实验中抑制MFC性能的主要因素是阴极的极化损失, 通过降低进入阴极室溶液的COD浓度、采用优质的阴极材料和加大阴极室内的曝气量等方法进一步优化电池的性能.  相似文献   

2.
张瑞  吴云  王鲁天  吴强  张宏伟 《化学进展》2020,32(12):2013-2021
微生物燃料电池(MFC)阴极电子受体的多样性可实现其阴极脱氮,从而将产生的电能合理利用,因此阴极脱氮成为了MFC的一个研究方向,同时也为实际废水中氮素的去除提供了新的可能。然而在反应过程中有众多因素会导致NOx-N与其他电子受体竞争阳极电子的现象,影响阴极反硝化过程对于电子的利用率,从而造成脱氮效率低等现实问题。目前已有许多研究通过优化MFC自身结构弥补产电的缺陷,及将与其他工艺系统耦合实现同步硝化反硝化等方法,取长补短以增加脱氮效率,降低对碳源的需求,以此解决微生物燃料电池阴极脱氮出现的问题。本文从MFC不同的脱氮历程、MFC工艺条件(pH、C/N、DO)、极室分隔材料等影响MFC阴极脱氮的因素及影响其阴极反硝化微生物群落构成等方面,进行了综述并预测未来研究方向。  相似文献   

3.
微生物燃料电池的产电机制   总被引:8,自引:0,他引:8  
微生物燃料电池(MFC)利用微生物作催化剂直接从可降解有机物中提取电能,它具有废弃物处置与产电双重功效,是未来理想的产电方式和有机废弃物资源化处置工艺.当前MFC技术的主要限制因素是电池输出功率低.MFC产电机制的研究是深入掌握电池工作状态、改善电池构造、优化电极材料从而提高输出功率的理论基础.本文将MFC产电机制分为5个步骤,即底物生物氧化、阳极还原、外电路电子传输、质子迁移、阴极反应,对其进行了详细评述,并提出了产电机制的发展趋势与今后的研究思路.  相似文献   

4.
以双室微生物燃料电池为反应器,铁氰化钾为阴极液,研究污水处理厂活性污泥菌液和玉米秸秆水解液对MFC的产电性能的影响。结果表明,随着阳极中活性污泥菌液体积(1.5、3.0、4.5、6.0 mL)增加,MFC的产电量逐渐增加,当活性污泥的体积增加至7.5 mL时,产电量开始呈下降趋势;玉米秸秆水解液在底物中的浓度为0、10、15、20、30、40 g/L时,电池的稳定电压分别为54、157、248、208、170、146 mV。当阳极活性污泥菌液体积为6 mL、玉米秸秆水解液浓度为15 g/L时,微生物燃料电池的产电性能最佳,此时MFC的功率密度为54.6 mW/m2,内阻为496 Ω。同时,循环伏安曲线(C-V)和交流阻抗曲线(EIS)测试可知,MFC的电极过程由电荷传递和扩散过程共同控制,反应过程受电子传递控制。  相似文献   

5.
以玉米秸秆稀酸水解液为阳极底物,用污水处理厂活性污泥为产电微生物菌源构建双室微生物燃料电池(MFC),采用三种不同方法改性阳极碳毡,并对其MFC产电性能进行研究。结果表明,以未改性碳毡(CC)、HNO_3酸解CC(HNO_3/CC)、壳聚糖改性CC(chitosan/CC)、PDADMAC/α-Fe_2O_3层层自组装改性碳毡(PDADMAC/α-Fe_2O_3/CC)的MFC的最大产电量分别为248、315、452和522 mV,最大功率密度分别为54.6、92.7、203.8和248.1 mW/m~2,COD的去除率分别为82.21%、81.46%、82.53%和86.44%。循环伏安曲线显示,PDADMAC/α-Fe_2O_3层层自组装改性的阳极碳毡具有较高的氧化还原电位。电化学阻抗谱图表明,PDADMAC/α-Fe_2O_3层层自组装改性碳毡的极化内阻最小,为7Ω。几种改性材料为阳极的MFC性能依次为PDADMAC/α-Fe_2O_3/CC壳聚糖/CCHNO_3/CC空白CC。  相似文献   

6.
生物阴极微生物燃料电池不同阴极材料产电特性   总被引:6,自引:0,他引:6  
以葡萄糖(COD初始浓度为2000 mg/L, COD为化学需氧量)为阳极燃料底物, 考察了碳纤维刷和柱状活性碳颗粒作为生物阴极微生物燃料电池(MFC)阴极材料的产电性能. 研究结果表明, 碳纤维刷MFC的启动时间比碳颗粒MFC的长, 达到稳定状态后的恒负载(300 Ω)电压(0.324 V)比碳颗粒阴极MFC的(0.581 V)低. 极化分析结果表明, 碳纤维刷MFC和碳颗粒MFC的最大功率密度分别为24.7 W/m3(117.2 A/m3)和50.3 W/m3(167.2 A/m3). 电化学交流阻抗谱(EIS)测定结果表明, 由于电极材料对微生物生长和分布状态存在不同的影响, 使得碳纤维刷阴极MFC的极化内阻大于碳颗粒阴极MFC的极化内阻.  相似文献   

7.
阳极电势对Geobacter sulfurreducens产电性能的影响   总被引:1,自引:0,他引:1  
以产电模式菌Geobacter sulfurreducens为研究对象接种两瓶型微生物燃料电池(MFC)阳极室, 利用恒电位仪控制阳极电势, 考察了7种电势条件下MFC的启动期、最大功率密度和阳极生物量的变化情况. 研究结果表明, 当阳极电势为-250, -100和50 mV(vs. SCE)时, MFC启动较快, CV曲线和极化曲线表明, 在这3种电势条件下, MFC产电性能增强, 其中阳极电势为-100 mV时, MFC最大功率密度为1.67 W/m3, 比固定外阻条件下启动的MFC最大功率密度提高了5倍. 控制合适的阳极电势可以使阳极生物量提高2.5~3倍.  相似文献   

8.
以不同载量的MnO_2/rGO和Pt/C修饰阴极电极构建了生物阴极型双室微生物燃料电池(MFC),考察了不同阴极催化剂修饰MFC对其产电性能以及老龄垃圾渗滤液主要污染物去除效果的影响。结果表明,以MnO_2/rGO修饰MFC阴极电极材料,能显著提高MFC产电性能及对老龄垃圾渗滤液中污染物去除效果;输出电压为372 mV,功率密度为194 mW/m~3(是未经催化剂修饰MFC的两倍),内阻为264Ω,化学需氧量(COD)和氨氮(NH_3-N)去除率分别为58.68%和76.64%。当MnO_2/rGO载量为.0 mg/cm~2时,MFC性能与负载Pt/C的MFC性能接近,但构建成本却明显降低。  相似文献   

9.
生物燃料电池处理生活污水同步产电特性研究   总被引:1,自引:0,他引:1  
以某生活污水处理厂缺氧池活性污泥为接种体,以葡萄糖为模拟生活废水,构建双室型微生物燃料电池。利用微生物燃料电池(MFC,Microbial fuel cell)实现生活废水降解与同步产电。研究基质降解动力学及温度对MFC电极过程动力学的影响,明确微生物电化学活性、阳极传荷阻抗、阳极电势、电池产能之间的关系,考察库伦效率及COD去除率。研究结果表明,电池功率输出与基质浓度关系遵循莫顿动力学方程:P=Pmaxc/(ks+c),其中,半饱和常数ks为138.5 mg/L,最大功率密度Pmax为320.2 mW/m2。葡萄糖浓度较小时,反应遵循一级动力学规律:-dcA/dt=kcA,k=0.262 h-1。操作温度从20℃提高到35℃,生物膜电化学活性不断提高,传荷阻抗从361.2Ω减小到36.2Ω,阳极电极电势不断降低,同时,峰值功率密度从80.6 mW/m2提高到183.3 mW/m2。45℃时,产电菌活性降低,峰值功率密度减小到36.8 mW/m2。葡萄糖浓度为1 500 mg/L,温度为35℃时,MFC电化学性能最佳,稳定运行6 h后库伦效率为44.6%,COD去除率为49.2%。  相似文献   

10.
空气阴极生物燃料电池电化学性能   总被引:12,自引:0,他引:12  
为提高生物燃料电池(MFC)的输出功率, 降低内阻和有机物处理成本, 实验以空气电极为阴极, 泡沫镍(铁)为阳极,葡萄糖模拟废水为基质构建了直接空气阴极单室生物燃料电池, 考察了电池的电化学性能. 结果表明, MFC的开路电压为0.62 V, 内阻为33.8 Ω, 最大输出功率为700 mW·m-2 (4146 mW·m-3污水), 电子回收率20%. 放电曲线、循环伏安测试表明, MFC首次放电比容量和比能量分别为263 mAh·g-1 COD(化学需氧量)和77.3 mWh·g-1 COD, MFC充放电性能及稳定性均较好. 电化学交流阻抗谱(EIS)分析表明, 随放电时间的延长, 电池阻抗增大, 这是导致电池输出电压逐渐降低的原因之一. MFC运行8 h, COD的去除率为56.5%, 且COD的降解符合表观一级反应动力学.  相似文献   

11.
高锰酸钾作阴极的微生物燃料电池   总被引:3,自引:0,他引:3  
构建了一个以醋酸钠水溶液为阳极原料、高锰酸钾为阴极氧化剂的双室微生物燃料电池, 考察了阴极溶液浓度、阴极流动状态、外电阻和pH值等因素对电池性能的影响, 监测了电池外电压和两极电极电势的变化过程, 并分析了阴极极化的原因和限制微生物燃料电池(MFC)的关键因素. 研究结果显示: (1) MnO2在碳纸表面的沉积是阴极极化的主要原因, 而溶液流动可以明显降低极化程度; 将高锰酸钾溶解在缓冲溶液中可以进一步降低阴极H+浓差极化; (2) 根据极化曲线可以推断, 影响电池输出功率的决定性因素应是微生物代谢反应速度和微生物与电极之间的电子传递速率; (3) 随外电阻的变化, 电池输出功率出现极大值824 mW/m2, 相应外电阻为300 Ω左右, 这与通过I-V关系曲线推导得到的电池内阻(284±18) Ω相吻合; (4) pH值和高锰酸钾浓度对电池阴极电极电势的影响符合Nernst方程.  相似文献   

12.
微生物燃料电池非生物阴极催化剂的研究进展   总被引:1,自引:0,他引:1  
在微生物燃料电池(MFC)中,以氧为电子受体具有很多优点,但氧阴极还原的反应动力学慢,会造成阴极电势的损失。 因此,提高阴极对氧还原的电催化活性和降低催化剂的价格是MFC非生物阴极催化剂的研究重点之一。 本文综述了近年来MFC中非生物阴极氧还原催化剂的研究进展。 重点讨论了贵金属Pt、过渡金属大环化合物以及金属氧化物催化剂对氧还原的电催化活性。 其中,非贵金属氧化物及过渡金属大环化合物催化剂具有良好的性能,而且价格低廉,有望成为MFC非生物阴极Pt基催化剂的替代催化剂。  相似文献   

13.
Utilizing microbial fuel cells (MFCs) is a promising technology for energy-efficient domestic wastewater treatment, but it still faces practical barriers such as low power generation. In this study, the LaMnO3 perovskite-type oxide nanoparticles and nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite (the cathode and anode catalysts, respectively) have been prepared and used to enhance power density of MFC. The prepared La-based perovskite oxide catalysts were characterized by X-ray diffraction (XRD) and scanning electron microscopies (SEM). The electrocatalytic properties of the prepared catalysts were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and Tafel plot at ambient temperature. Results show the exchange current densities of LaMnO3/carbon cloth cathode and NCP nanocomposite/carbon cloth anode were 1.68 and 7 times more compared to carbon cloth cathode, respectively. In comparison to the bare carbon cloth anode, the MFC with the modified electrodes shows 11 times more enhancement in power density output which according to electrochemical results, it can be due to the enhancement of the electron transfer capability. These cathodic and anodic catalysts were examined in batch and semi-continuous modes to provide conditions close to industrial conditions. This study suggests that utilizing these low cost catalysts has promising potential for wastewater treatment in MFC with high power generation and good COD removal efficiency.  相似文献   

14.
In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.  相似文献   

15.
微生物燃料电池生物阴极   总被引:1,自引:0,他引:1  
陈立香  肖勇  赵峰 《化学进展》2012,24(1):157-162
微生物燃料电池(microbial fuel cells, MFCs)利用微生物处理废水的同时产电,是一种清洁可再生能源技术。近年来新兴起的生物阴极是指阴极室中的功能微生物附着在电极表面形成生物膜,电子由电极传递给微生物并发生相应的生物电化学反应;是微生物燃料电池研究的一个重要方向。本文根据厌氧、好氧操作体系的不同将生物阴极进行分类;归纳总结了微生物组成、电极和分隔材料的研究进展,探讨了生物阴极在去除污染物和生成高附加值产品中的实际应用,并提出了其将来发展的可能方向。  相似文献   

16.
采用单室空气阴极微生物燃料电池(MFC)反应器构型, 以不同浓度萘为基底物质, 考察MFC的产电性能、 萘降解率、 化学需氧量(COD)和总有机碳含量(TOC)降解率及MFC阴阳极微生物活性和多样性. 结果表明, 循环伏安曲线受不同浓度萘的影响变化较为明显, 随着萘浓度的增大, 最大功率密度呈下降趋势, 且萘对MFC的阴极电极电势影响较大; 当萘的浓度为15 mg/L时, MFC最大功率密度可达(645.841±28.08) mW/m 2; 对萘的降解率高达100%, 且MFC对COD和TOC的降解率随着萘浓度的提高而增大, 但是增大的速率逐渐减小. 对MFC阳极微生物膜进行高通量测序发现, Geobacter是优势菌属, 相对丰度达81%, 阴极主要以Aquamicrobium为主.  相似文献   

17.
构建了一个以曝气池污泥为阳极接种微生物、碳毡为阳极、无任何修饰的不锈钢网为阴极的双室微生物燃料电池. 通过输出电压、功率密度以及电化学阻抗等考察了阴极面积对电池产电性能的影响,并对电池的长期运行稳定性进行评价. 研究结果表明,不锈钢网作为微生物燃料电池的阴极性能稳定. 当不锈钢网面积为2 × 2 cm2时,最大输出电压达到0.411 V,功率密度为0.303 W•m-2,内阻841 Ω,极化内阻80 Ω. 增大阴极面积至2 × 4 cm2,最大输出电压能达到0.499 V,内阻减小至793 Ω. 不锈钢网价格便宜,具有长期运行稳定性,适宜做MFCs的阴极.  相似文献   

18.
The measurement of electricity generation from an air-cathode microbial fuel cell (MFC) with a mixed bacteria culture at different pH showed that this MFC could tolerate an initial (feed solution) pH as high as 10. The optimal initial pH was between 8 and 10 with higher current generation compared to lower or higher pH. The bacterial metabolism exhibited a buffer effect and changed the electrolyte pH. The impedance spectra of the anode and cathode of the MFC at the open-circuit potential (OCP) revealed that the anodic microbial process preferred a neutral pH and microbial activities decreased at higher or lower pH; while the cathodic reaction was improved with increasing pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号