首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers.  相似文献   

2.
The article reports a methodology to synthesize the response of plane strain orthotropic and transversely isotropic half-spaces and full-spaces with arbitrarily oriented symmetry axes and subjected to concentrated and to distributed loads. Numerical results include the response of a half-space and a full-space to a uniform strip load. The examples presented analyze the influence of coordinate axis rotation and of the continuum anisotropy ratios. Stationary dynamic behavior is assumed throughout the article.  相似文献   

3.
This investigation is concerned with a mathematical analysis of an elastic circular cylindrical pile embedded in a transversely isotropic half-space under lateral dynamic excitations. A combination of time-harmonic horizontal shear force and moment are applied at the top end of the pile. The boundary value problem is formulated by decomposing the pile-medium system into a fictitious pile and an extended transversely isotropic half-space. A Fredholm integral equation of the second kind governs the interaction problem, whose solution is then computed numerically. Selected results for dynamic compliance bending moment, displacement and slope profiles are presented for different transversely isotropic half-spaces to portray the influence of degree of anisotropy of the medium on various aspects of the solution.  相似文献   

4.
The contact interaction of two elastic isotropic half-spaces is analyzed. One of the half-spaces has a smooth shallow depression, resulting in an imperfect contact of the surfaces. The contact gap is assumed filled with a real gas. Gas–liquid transition due to variation in the external load and temperature is considered. The plane problem formulated is solved by the method of contact-gap functions. The effect of the filler and its phase transition on the width and depth of the gap and the contact pressure is studied  相似文献   

5.
In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.  相似文献   

6.
Green’s functions of a transversely isotropic half-space overlaid by a thin coating layer are analytically obtained. The surface coating is modeled by a Kirchhoff thin plate perfectly bonded to the half-space. With the aid of superposition technique and employing appropriate displacement potential functions, the Green’s functions are expressed in two parts; (i) a closed-form part corresponding to the transversely isotropic half-space with surface kinematic constraints, and (ii) a numerically evaluated part reflecting the interaction between the half-space and the plate in the form of semi-infinite integrals. Some limiting cases of the problem such as surface-stiffened isotropic half-space, Boussinesq and Cerruti loadings, and extremely flexible and rigid plates are also studied. For the classical Cerruti problem in transversely isotropic materials, the effects of incompressibility are highlighted. Numerical results are provided to show the effects of material anisotropy, relative stiffness factor, and load buried depth. The obtained Green’s functions play a key role in treating further mixed-boundary-value problems in surface stiffened transversely isotropic half-spaces.  相似文献   

7.
Summary This paper deals with the stationary heat conduction in a solid consisting of planar, isotropic or transversely isotropic layers. The following cases are considered: (1) arbitrarily layered solid, (2) macroperiodically layered solid, consisting of equal pairs of different basic layers with finite thicknesses, (3) microperiodically layered solid, consisting of equal layer groups of two or more different basic layers of infinitesimal thicknesses. Assuming a perfect contact between the layers, exact solutions for the plane, the axisymmetric and the general three-dimensional problem of macro- and microperiodically layered semispaces, respectively, are derived using integral transforms and the transfer-matrix method. It is proved that the microperiodically layered solid with isotropic or transversely isotropic basic layers is equivalent to a homogeneous transversely isotropic solid. Received 31 March 1999; accepted for publication 21 May 1999  相似文献   

8.
The contact problem between two orthotropic solids is examined. The problem is solved by using Lodge's method, which permits the transformation of the boundary-value problem of an anisotropic solid to a form identical with the corresponding problem of an isotropic medium. The proposed solution is then compared with known results of certain cases and it is observed that it producesHertz's solution when used for an isotropic case,Lodge's solution when applied to contact between an orthotropic solid and a rigid plane and, finally,Love's solution if the solid is transversely isotropic with the axis of material symmetry perpendicular to the rigid plane of contact.  相似文献   

9.
In this work a contact problem for a transversely isotropic half-space indented by a rigid sphere is considered. The axis of symmetry of the half-space is orthogonal to the axis of the applied contact load, which makes the problem fully three-dimensional. An exact solution to this contact problem is constructed. Stresses and strains are obtained in the form of contour integrals in the complex plane with explicitly determined dimensionless integrands. As an illustrative application of the constructed solution, failure beneath the indenter in a unidirectional composite is analyzed.  相似文献   

10.
The effect of a thin isotropic coating on the edge effect zone in a representative element of a coated material is examined. Isotropic and transversely isotropic materials are considered. The transversely isotropic material has the elastic properties of unidirectional glass-fiber-reinforced plastic. The decay of the edge effect in the directions perpendicular to the coating plane and to the plane of isotropy is studied. A boundary-value problem of elasticity for piecewise-homogeneouse orthotropic bodies and a quantitative edge effect decay criterion for normal stresses are used as a design model. The problem is solved using the finite-difference method and base schemes. The results of evaluation of the edge effect zone in homogeneous and inhomogeneous materials are presented. It is shown that the presence of a thin isotropic coating blocks the edge effect, that is, decreases the edge effect zone in both isotropic and transversely isotropic materials __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 61–67, December 2007.  相似文献   

11.
The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.  相似文献   

12.
The propagation of finite-amplitude time-harmonic shear horizontal waves, in a pre-stressed compressible elastic layer of finite thickness embedded between two identical compressible elastic half-spaces, is investigated. This is accomplished by combining finite-amplitude linearly polarized inhomogeneous transverse plane wave solutions in the half-spaces and finite-amplitude linearly polarized unattenuated transverse plane wave solutions in the layer. The layer and half-spaces are made of different pre-stressed compressible neo-Hookean materials. The dispersion relation which relates wave speed and wavenumber is obtained in explicit form. The special case where the interfaces between the layer and the half-spaces are principal planes of the left Cauchy–Green deformation tensor is also investigated. Numerical results are presented showing the variation of the shear horizontal wave speed with the pre-stress and the propagation angle.  相似文献   

13.
Within the framework of the anisotropic theory of elasticity, a three-dimensional contact problem of interaction of two massive transversely isotropic bodies, whose dimensions substantially exceed the size of the contact region, is investigated. In this case, the isotropy planes of contacting elastic bodies are mutually perpendicular. Exact and numerical solutions of the problem are determined. Calculations for various transversely isotropic materials are carried out.  相似文献   

14.
Plane and axisymmetric contact problems for a three-layer elastic half-space are considered. The plane problem is reduced to a singular integral equation of the first kind whose approximate solution is obtained by a modified Multhopp-Kalandiya method of collocation. The axisymmetric problem is reduced to an integral Fredholm equation of the second kind whose approximate solution is obtained by a specially developed method of collocation over the nodes of the Legendre polynomial. An axisymmetric contact problem for an transversely isotropic layer completely adherent to an elastic isotropic half-space is also considered. Examples of calculating the characteristic integral quantities are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 165–175, May–June, 2006.  相似文献   

15.
The elastic displacements, stresses and interaction energy of arbitrarily shaped dislocation loops with general Burgers vectors in transversely isotropic bimaterials (i.e. joined half-spaces) are expressed in terms of simple line integrals for the first time. These expressions are very similar to their isotropic full-space counterparts in the literature and can be easily incorporated into three-dimensional (3D) dislocation dynamics (DD) simulations for hexagonal crystals with interfaces/surfaces. All possible degenerate cases, e.g. isotropic bimaterials and isotropic half-space, are considered in detail. The singularities intrinsic to the classical continuum theory of dislocations are removed by spreading the Burgers vector anisotropically around every point on the dislocation line according to three particular spreading functions. This non-singular treatment guarantees the equivalence among different versions of the energy formulae and their consistency with the stress formula presented in this paper. Several numerical examples are provided as verification of the derived dislocation solutions, which further show significant influence of material anisotropy and bimaterial interface on the elastic fields and interaction energy of dislocation loops.  相似文献   

16.
The present paper is concerned with the propagation of plane waves in a transversely isotropic dual-phase-lag generalized thermoelastic solid half-space. The governing equations are solved in x–z plane to show the existence of three plane waves. Reflection of these plane waves from thermally insulated as well as isothermal stress-free surfaces is studied to obtain a system of three non-homogeneous equations in reflection coefficients of reflected waves. For numerical computations of speeds and reflection coefficients, a particular material is modeled as transversely isotropic dual-phase-lag generalized thermoelastic solid half-space. The speeds of plane waves are computed numerically for a certain range of the angle of propagation and are shown graphically against the angle of propagation for the cases of dual-phase-lag (DPL) thermoelasticity, coupled thermoelasticity and Lord–Shulman generalized thermoelasticity. Reflection coefficients of various reflected plane waves are computed numerically for thermally insulated as well as isothermal cases and are shown graphically against the angle of incidence for the cases of DPL thermoelasticity, coupled thermoelasticity and Lord–Shulman generalized thermoelasticity.  相似文献   

17.
A mechanical and mathematical bending model for a stack of transversely isotropic plates is developed. The resolving equations for deflections and tangential displacements are supplemented with a system of differential equations for normal and tangential contact stresses. It is demonstrated that for stacks consisting of an arbitrary number of identical plates with no friction between them, the initial system of equations for contact stresses can be reduced to Helmholtz equations. This transition allows obtaining the complete eigenvalue spectrum for the Laplasian of the problem and, in special cases, eigenfunctions. They are Krylov functions when bending is cylindrical and Bessel functions when bending is axisymmetric  相似文献   

18.
I.IntroductionDuetotheirintrinsiccouplingeffectbetweenmechanicalandelectricalfields,piezoelectricmaterialshavebeenwidelyusedintechnologyastransducersandsensorsand,morerecently,asactuatorsinsmartstructures.lnordertooptimizetheirmicrostructuresandunderstand…  相似文献   

19.
Based on the basic equations for axisymmetric problems of transversely isotropic elastic materials, the displacement components are expressed in terms of polynomials of the radial coordinate with the five involved coefficients, named as displacement functions in this paper, being undetermined functions of the axial (thickness) coordinate. Five equations governing the displacement functions are then derived. It is shown that the displacement functions can be found through progressive integration by incorporating the boundary conditions. Thus a three-dimensional analytical solution is obtained for a transversely isotropic functionally graded disc rotating at a constant angular velocity.The solution can be degenerated into that for an isotropic functionally graded rotating disc. A prominent feature of this solution is that the material properties can be arbitrary functions of the axial coordinate. Thus, the solution for a homogeneous transversely isotropic rotating disc is just a special case that can be easily derived. An example is finally considered for a special functionally graded material, and numerical results shows that the material inhomogeneity has a remarkable effect on the elastic field.  相似文献   

20.
A transversely isotropic material in the sense of Green is considered. A complete solution in terms of retarded potential functions for the wave equations in transversely isotropic media is presented. In this paper we reduce the number of potential functions to only one, and we discuss the required conditions. As a special case, the torsionless and rotationally symmetric configuration with respect to the axis of symmetry of the material is discussed. The limiting case of elastostatics is cited, where the solution is reduced to the Lekhnitskii–Hu–Nowacki solution. The solution is simplified for the special case of isotropy. In this way, a new series of potential functions (to the best knowledge of the author) for the elastodynamics problem of isotropic materials is presented This solution is reduced to a special case of the Cauchy–Kovalevski–Somigliana solution, if the displacements satisfy specific conditions. Finally, Boggio's Theorem is generalized for transversely isotropic media which may be of interest to the reader beyond the present application. Dedicated to Morton E. Gurtin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号