首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desorption of Cs and Na atoms from the corresponding layers applied to a gold film deposited on textured tungsten ribbon with a preferred orientation of the (100) surface is studied by thermal desorption spectroscopy with the products of thermal desorption scanned on a pulsed time-of-flight mass spectrometer. The Cs atoms evaporated at T = 300 K are desorbed by two phases, one of which can be identified with the filling of a monolayer and the other can be attributed to the formation of the CsAu compound. The Na atoms evaporated at T = 300 K are desorbed by three phases associated with the formation of a monolayer coating, a sodium compound of with gold, and a multilayer sodium film.  相似文献   

2.
It has been shown that deposition of Sm atoms on W(100) surface coated by several monolayers of gold and cesium affects noticeably the yield of Cs atoms in electron-stimulated desorption (ESD) from this surface. The measurements have been performed by the time-of-flight method with a surface-ionization detector. The paper reports on the first observation of ESD of Sm atoms from the tungsten surface coated by layers of gold and cesium. The ESD threshold for Sm atoms, E e = 57 eV, coincides with that for Cs atoms and corresponds to the energy of the Au 5p 3/2 core level. The dependence of the ESD yield of Sm atoms on the bombarding electron energy E e follows a resonance pattern in the form of a narrow peak located in the range 57 ≤ E e ≤ 66 eV. Deposition of Sm atoms at room temperature (~300 K) reduces (by a factor of about two) the ESD yield of Cs atoms for 600 s, and deposition of Sm atoms at 160 K reduces the ESD of Cs atoms down to zero already for 270 s. This difference finds explanation in the study of the change the structure of the top layer of the (Au + Cs)/W surface coating undergoes under cooling of the surface from 300 to 160 K.  相似文献   

3.
The yield and energy distribution of Cs atoms from cesium layers adsorbed on germanium-coated tungsten were measured, using the time-of-flight technique with a surface-ionization-based detector, as a function of the energy of bombarding electrons, germanium film thickness, the amount of adsorbed cesium, and substrate temperature. The threshold for the appearance of Cs atoms is ~30 eV, which correlates well with the germanium 3d-level ionization energy. As the electron energy increases, the Cs atom yield passes through a broad maximum at ~120 eV. For germanium film thicknesses from 0.5 to 2 monolayers, resonance Cs yield peaks were observed at electron energies of 50 and 80 eV, which can be related to the tungsten 5p and 5s core-level ionization energies. As the cesium coverage increases, the Cs atom yield passes through a flat maximum at monolayer coverage. The energy distribution of Cs atoms follows a bell-shaped curve. With increasing cesium coverage, this curve shifts to higher energies for thin germanium films and to lower energies for thick films. The Cs energy distribution measured at a substrate temperature T = 160 K exhibits two bell-shaped peaks, namely, a narrow peak with a maximum at ~0.35 eV, associated with tungsten core-level excitation, and a broad peak with a maximum at ~0.5 eV, deriving from the excitation of the germanium 3d core level. The results obtained can be described within a model of Auger-stimulated desorption.  相似文献   

4.
This paper reports on the first measurement of the yield and energy distributions of sodium atoms in electron-stimulated desorption at T = 160 K from sodium layers adsorbed on tungsten with a gold film atop. The Na atom yield has a resonant pattern with an appearance threshold of 30 eV, which can be attributed to exciton excitation in the Na 2p level. The Na yield is associated with the formation of a semiconducting Na x Au y film at T ∼ 300 K and sodium and gold coverages in excess of one monolayer. Sodium atoms are desorbed through Auger neutralization of Na2+ ions in their reverse motion toward the surface and is limited by the resonant ionization of Na atoms as they pass through the adsorbed layer of Na+ ions. The energy distributions of Na atoms are bell shaped with a maximum at about 0.56 eV.  相似文献   

5.
V.N. Ageev  T.E. Madey 《Surface science》2006,600(10):2163-2170
The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.  相似文献   

6.
The interaction of Cs and O2 on MoS2(0001) has been studied both in the alternate adsorption and the codeposition mode by LEED, AES, TDS and WF measurements at 170 and 300 K. Oxygen does not interact with Cs when θCs?0.04 at 300 K or θCs?0.08 at 170 K, where Cs is known to adsorb as strongly ionized, individual adatoms. The interaction at higher θCs, where Cs is known to form clusters on MoS2(0001), leads to clusters of a Cs/O complex characterized by a Cs(563 eV)/O(512 eV) Auger peak ratio of 1.1–1.3. The minimum WF is 2.1 eV at 300 and 170 K upon alternate adsorption, and 1.7 eV at both T upon codeposition. Upon heating, oxygen and Cs desorb independently, as no oxide desorption is observed. The Cs TDS spectrum is shifted to lower T in the presence of oxygen and a new desorption peak appears at ~ 880 K. The differences in the Cs/O interaction between MoS2(0001) and other semiconductors and metals are attributed to the Cs clustering and the inertness of MoS2(0001) to O2 adsorption.  相似文献   

7.
The kinetics of adsorption and desorption of gold atoms from the surface of a thin (<2 nm) oxide film grown on a textured W ribbon with the preferred emergence of the (100) face is studied using termal desorption spectrometry in a wide range of coatings. A single desorption phase is observed in the spectra of termal desorption of Au atoms from oxidized W. The activation energy of desorption of Au atoms from tungsten oxides is lower than the gold sublimation heat (it amounts to E = 3.1 eV for the concentration of adsorbate atoms on the surface corresponding to coverage θ s = 2.38). The gold film on oxidized tungsten at room temperature grows in the form of 3D islands. The sticking coefficient for gold atoms at T = 300 K is close to unity in the coverage range 0.5 < θ s < 2.5.  相似文献   

8.
The yield and energy distributions of Cs atoms emerging from cesium layers, which are adsorbed on tungsten coated with a thin germanium film (1-to 2-monolayers thick), have been measured as a function of the incident electron energy, the amount of adsorbed cesium, and the substrate temperature. The measurements were performed by the time-of-flight technique with a surface ionization detector. At low cesium coverages (Θ < 0.1), the Cs atom appearance threshold at a substrate temperature T = 160 K is ~24 eV, which correlates with the Cs 5s-level ionization energy. As the electron energy is increased, the yield passes through a broad plateau and reaches saturation. The signal intensity in the plateau region decreases gradually with increasing cesium coverage and tends to zero for Θ > 0.14. For Θ ≥ 0.15, the cesium atom appearance threshold shifts to ~30 eV, which corresponds to the Ge 3d-level ionization energy and the plateau is replaced by a resonance peak at ~38 eV, which can be identified with the ionization energy of the W 5p 3/2 level. This peak is observed only for Θ < 0.3 and T = 160 K. For Θ ≥ 0.3, there appears a resonance peak at ~50 eV, and for Θ ≥ 0.5, another resonance peak appears at ~80 eV. These peak positions correlate with the ionization energies of the W 5p 1/2 and W 5s levels, and their intensity is maximum at Θ = 1. The Cs atom energy distributions for Θ < 0.15 consist of a bell-shaped peak with a maximum at ~0.55 eV, and those for Θ ≥ 0.15 contain two nearly resolved maxima, a broad one peaking at ~0.5 eV and a narrow one at ~0.35 eV. The above results argue for the existence of three channels of Cs atom desorption. One channel involves reverse motion of the Cs2+ ion; another channel, neutralization of the adsorbed Cs+ ion following the Auger decay of a vacancy in the Ge atom; and the third channel involves desorption of a CsGe molecule as it is repelled from a W core exciton.  相似文献   

9.
After a brief discussion of the main result of the research initiated by N.I. Ionov in his laboratory using electron-stimulated desorption for studying the surface layers of tungsten, we consider in greater detail recent results on layered coatings formed on the tungsten surface upon simultaneous adsorption of sodium (or cesium) and gold atoms on this surface, as well as the effect of sputtering of samarium atoms on the (Cs + Au)/W(100) surface that has already been formed at 300 K.  相似文献   

10.
The yield and energy distributions of potassium and cesium atoms emitted in electron-stimulated desorption (ESD) from a molybdenum surface, oxidized to different extent and maintained at 300 K, have been measured by the time-of-flight technique with a surface ionization detector. The ESD threshold for potassium and cesium atoms lies around 25 eV, irrespective of molybdenum oxidation state. In the case of molybdenum coated by an oxygen monolayer, secondary thresholds at ∼40 and ∼70 eV have been observed, as well as atomic energy distribution tailing down to very low energies. The most probable kinetic energies of the atoms are a few tenths of one eV. The results are explained within a model involving Auger neutralization of the adsorbed alkali metal ions after the filling of the 2s O, 4s Mo, and 4p Mo core holes. The possibility of ESD of a neutral species as a result of oxide-cation core-level ionization has been demonstrated for the first time. Fiz. Tverd. Tela (St. Petersburg) 39, 758–761 (April 1997)  相似文献   

11.
The electron-stimulated desorption (ESD) yields and energy distributions for potassium (K) and cesium (Cs) atoms have been measured from K and Cs layers adsorbed at 300 K on oxidized molybdenum surfaces with various degrees of oxidation. The measurements were carried out using a time-of-flight method and surface ionization detector. The ESD appearance threshold for K and Cs atoms is independent of the molybdenum oxidation state and is close to the oxygen 2s level ionization energy of 25 eV. Additional thresholds for both K and Cs atoms are observed at about 40 and 70 eV in ESD from layers adsorbed on an oxygen monolayer-covered molybdenum surface; they are associated with resonance processes involving Mo 4p and 4s excitations. The ESD energy distributions for K and Cs atoms consist of single peaks. The most probable kinetic energy of atoms decreases in going from cesium to potassium and with increasing adsorbed metal concentration; it lies in the energy range around 0.35 eV. The K and Cs atom ESD energy distributions from adlayers on an oxygen monolayer-covered molybdenum surface are extended toward very low kinetic energies. The data can be interpreted by means of the Auger stimulated desorption model, in which neutralization of adsorbed alkali-metal ions occurs after filling of holes created by incident electrons in the O 2s, Mo 4s or Mo 4p levels.  相似文献   

12.
Cesium adsorption on oxygenated and oxidized W(110) is studied by Auger electron spectroscopy, LEED, thermal desorption and work function measurements. For oxygen coverages up to 1.5 × 1015 cm?2 (oxygenated surface), preadsorbed oxygen lowers the cesiated work function minimum, the lowest (~1 eV) being obtained on a two-dimensional oxide structure with 1.4 × 1015 oxygen atoms per cm2. Thermal desorption spectra of neutral cesium show that the oxygen adlayer increases the cesium desorption energy in the limit of small cesium coverages, by the same amount as it increases the substrate work function. Cesium adsorption destroys the p(2 × 1) and p(2 × 2) oxygen structures, but the 2D-oxide structure is left nearly unchanged. Beyond 1.5 × 1015 cm?2 (oxidized surface), the work function minimum rises very rapidly with the oxygen coverage, as tungsten oxides begin to form. On bulk tungsten oxide layers, cesium appears to diffuse into the oxide, possibly forming a cesium tungsten bronze, characterized by a new desorption state. The thermal stability of the 2D-oxide structure on W(110) and the facetting of less dense tungsten planes suggest a way to achieve stable low work functions of interest in thermionic energy conversion applications.  相似文献   

13.
At 300 K oxygen chemisorbs on Ag(331) with a low sticking probability, and the surface eventually facets to form a (110)?(2 × 1) O structure with ΔΦ = +0.7 eV. This facetting is completely reversible upon O2 desorption at ~570 K. The electron impact properties of the adlayer, together with the LEED and desorption data, suggest that the transition from the (110) facetted surface to the (331) surface occurs at an oxygen coverage of about two-thirds the saturation value. Chemisorbed oxygen reacts rapidly with gaseous CO at 300 K, the reaction probability per impinging CO molecule being ~0.1. At 300 K chlorine adsorbs via a mobile precursor state and with a sticking probability of unity. The surface saturates to form a (6 × 1) structure with ΔΦ = +1.6 eV. This is interpreted in terms of a buckled close-packed layer of Cl atoms whose interatomic spacing is similar to those for Cl overlayers on Ag(111) and Ag(100). Desorption occurs exclusively as Cl atoms with Ed ~ 213 kJ mol?1; a comparison of the Auger, ΔΦ, and desorption data suggests that the Cl adlayer undergoes significant depolarisation at high coverages. The interaction of chlorine with the oxygen predosed surface, and the converse oxygen-chlorine reaction are examined.  相似文献   

14.
The dependence of the time of longitudinal relaxation of the ground-state cesium vapor on the temperature of the antirelaxation coating of the cell walls is studied experimentally. It is found that the fast component of relaxation is independent of the coating temperature, while the slow component depends on it. The temperature dependence of the slow relaxation component is used to estimate the energy of activation of desorption of cesium atoms from the antirelaxation coating, E desorp = 0.13 eV.  相似文献   

15.
The yield of europium and samarium atoms in electron-stimulated desorption from layers of rare-earth metals (REMs) adsorbed on the surface of oxidized tungsten has been measured as a function of the incident electron energy, surface coverage by REMs, degree of tungsten oxidation, and substrate temperature. The measurements were performed using the time-of-flight method with a surface-ionization-based detector within the substrate temperature interval 140–600 K. The yield studied as a function of electron energy has a resonance character. Overlapping resonance peaks of Sm atoms are observed at electron energies of 34 and 46 eV, and those of Eu atoms, at 36 and 41 eV. These energies correlate well with the REM 5p and 5s core-level excitation energies. The REM yield is a complex function of the REM coverage and substrate temperature. The peaks due to REM atoms are seen at low REM coverages only, and their intensity usually passes through a maximum with increasing coverage and substrate temperature. The concentration dependence of the REM atom yield is affected by the deposition of slow Ba+ ions, but only if they are deposited after the REM adsorption. At higher REM coverages, additional peaks are observed at electron energies of 42, 54, and 84 eV, which originate from excitation of the 5p and 5s tungsten levels and result from desorption of SmO and EuO molecules. The temperature dependence of the intensity of these peaks is explained to be due to the order-disorder phase transition. The desorption of REM atoms is the result of their reversed motion through the adsorbed REM layer, and the SmO and EuO molecules desorb due to the formation of an antibonding state between the REM oxide molecules and the tungsten ions.  相似文献   

16.
Physics of the Solid State - The yield and energy distributions of cesium atoms escaping in electron-stimulated desorption (ESD) from cesium layers adsorbed on tungsten coated by a gold film have...  相似文献   

17.
The interactions of methyl and methylene radicals on Cu(111) were investigated with XPS, AES and HREELS under various exposure conditions. The CH2 and CH3 radicals are generated through a hot nozzle source with ketene and azomethane gases. It is shown that with substrate at 300 K, the impinging CH3 radicals are trapped mainly as CH3(ads), while a part of the adsorbate decomposes to form CH2(ads) and H(ads). H atoms are found to desorb at about 380 K, while the chemisorbed hydrocarbon adspecies desorb at about 420 K. In drastic contrast, exposing the clean Cu surface to methylene radicals results not only in the trapping of CH2(ads), but also in the formation of complex aromatic species. The adlayer is sensitive to annealing at elevated temperatures. Desorption and partial conversion to methylidyne take place at around 420 K. The CH(ads) species can survive up to 700 K and then decomposes to form residual carbon above 800 K. In both radical-Cu(111) systems, surface coverage appears to saturate near one monolayer. The relative concentrations of different surface species in the adlayer, however, depend on the amount of radical exposure. The reaction properties of the two systems are compared and discussed.  相似文献   

18.
The yield of europium atoms in electron-stimulated desorption from Eu layers adsorbed on the surface of oxidized tungsten was studied with a surface-ionization detector as a function of the incident-electron energy, surface coverage by europium, and degree of tungsten oxidation. The yield of Eu atoms measured as a function of electron energy exhibits a distinct resonant character with peaks at electron energies corresponding to europium and tungsten core-level ionization energies. The peaks associated with the europium ionization reach a maximum intensity at europium coverages less than 0.1 and decrease subsequently to zero with increasing coverage, while the peaks due to tungsten ionization pass through the maximum intensity at a monolayer europium coverage. The coverage corresponding to the maximum europium atom yield grows with increasing tungsten oxidation. The results obtained are accounted for by the formation of the europium and tungsten core excitons. In the first case, the particles desorb in the reverse motion toward the surface of the oxidized tungsten; in the second, they desorb as a result of repulsion between the tungsten core exciton and the EuO molecule.  相似文献   

19.
The yield and energy distributions of sodium atoms upon electron-stimulated desorption from sodium layers adsorbed on tungsten coated with a gold film are investigated for the first time as functions of the thickness of the gold film, the concentration of deposited sodium, and the surface temperature. It is found that the energy distributions exhibit two peaks, namely, a narrow peak with a maximum at about 0.15 eV, whose intensity continuously increases with increasing temperature, and a broad peak with a maximum at about 0.35 eV, whose intensity either decreases or remains constant with increasing temperature. It is shown that both peaks arise as a result of the same excitation, which gives rise to different channels of electron-stimulated desorption of sodium atoms. Possible mechanisms of electron-stimulated desorption and the kinetics of destruction of the surface coating are discussed.  相似文献   

20.
The time-of-flight technique combined with a surface-ionization-based detector has been used to investigate the yield and energy distribution of sodium atoms escaping in electron-stimulated desorption (ESD) from adlayers on the surface of molybdenum oxidized to various degrees and maintained at T=300 K as functions of incident electron energy and surface coverage by sodium. The sodium-atom ESD threshold is about 25 eV, irrespective of sodium coverage and extent of molybdenum oxidation. Molybdenum covered by an oxygen monolayer exhibits secondary thresholds at ∼40 eV and ∼70 eV, as well as low-energy tailing of the energy distributions, its extent increasing with surface coverage by sodium Θ. The most probable kinetic energies of sodium atoms are about 0.23 eV, irrespective of the degree of molybdenum oxidation and incident electron energy at Θ=0.125, and decrease to 0.17 eV as the coverage grows to Θ=0.75. The results obtained are interpreted within a model of Augerstimulated desorption, in which adsorbed sodium ions are neutralized by Auger electrons appearing as the core holes in the 2sO, 4sMo, and 4pMo levels are filled. It has been found that the appearance of secondary thresholds in ESD of neutrals, as well as the extent of their energy distributions, depend on surface coverage by the adsorbate. Fiz. Tverd. Tela (St. Petersburg) 40, 768–772 (April 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号