首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A 1.94 μm Tm-doped fiber laser pumped tunable single-longitudinal-mode Ho:YLF laser with double etalons was reported for the first time. The maximum single-longitudinal-mode output power of 345 mW at 2051.6 nm was achieved at the absorbed pump power of 11.9 W, corresponding to a slope efficiency of 5.5% and an optical conversion efficiency of 2.9%. By regulating the angle of the F–P etalons, the output wavelength of the laser can be tuned from 2051.6 nm to 2063.3 nm. The single-longitude-mode Ho:YLF laser operating at 2 μm can be used as the seed laser source of coherent Doppler lidar, differential absorption lidar and so on.  相似文献   

2.
A diode-pumped high-power single-longitudinal-mode (SLM) Tm:YAG laser was investigated. To obtain a single-frequency 2 μm laser output, Fabry–Perot (F–P) etalons combined with a volume Bragg grating (VBG) were used as frequency selection devices. The transmission losses of the VBG and etalons were analyzed and the angles of F–P etalons were optimized theoretically. Considering the gains and the insertion losses, the output wavelength of the Tm:YAG laser was estimated to be 2012.47 nm. Using this method, as much as 574 mW SLM laser was obtained experimentally, corresponding to a slope-efficiency of 18.6% and an optical-to-optical efficiency of 8.2%. The output wavelength was measured to be 2012.47 nm, which was in excellent agreement with the theoretical result. The power instability was less than 1% in 30 minutes test, and the degree of the linear polarization was over 20 dB.  相似文献   

3.
We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.  相似文献   

4.
W.X. Lan  Q.P. Wang  Z.J. Liu  X.Y. Zhang  F. Bai  H.B. Shen  L. Gao 《Optik》2013,124(24):6866-6868
A diode end-pumped passively Q-switched Nd:YAG/KTA intracavity Raman laser is presented. A KTA crystal with a size of 5 mm × 5 mm × 25 mm is used as the Raman active medium and its 234 cm?1 Raman mode is employed to finish the conversion from 1064 nm fundamental laser to 1091 nm Raman laser. A 2 mm thick Cr4+:YAG crystal is used as the saturable absorber. With an LD pump power of 7.5 W, the first-Stokes power of 250 mW is obtained with a pulse repetition frequency of 14.5 kHz. The corresponding diode-to-Stokes conversion efficiency is 3.3% and the pulse energy is 17.2 μJ. Pulse width is measured to be 12.6 ns and peak power is 1.4 kW.  相似文献   

5.
A mini eye-safe KTiAsO4 intracavity optical parametric oscillator (IOPO) employing the shared cavity configuration and driven by a diode-end-pumped composite Nd:YAG/Cr4+:YAG laser is demonstrated in this paper. Under an incident laser diode power of 11 W, a maximum average output power of 424 mW at 1534 nm was obtained. The corresponding signal pulse width and repetition rate were 1.2 ns and 16.7 kHz, respectively. The fluctuation of the average signal output power over long-term operation was found to be ±3.0%. A theoretical model for the compact IOPO was also presented in this paper.  相似文献   

6.
We demonstrate a diode-pumped Nd:YAG ceramic laser with emission at 946 nm that is passively Q-switched by single-crystal Cr4+:YAG saturable absorber. An average output power of 1.7 W is measured under 18.4 W of incident power using an output mirror with transmission T=4%. The corresponding optical-to-optical efficiency is 9.2%. The laser runs at a pulse repetition rate of 120 kHz and delivers pulses with energy of 14 μJ and duration of 80 ns, which corresponds to a peak power of 175 W.  相似文献   

7.
Single-mode diodes enable a particularly simple, compact and effective pumping of solid-state laser devices for many specialized applications. We investigated a single-mode, 300-mW laser diode for pumping at 935 nm a Yb:YAG laser passively mode-locked by a semiconductor saturable absorber. Relatively short pulse generation (156 fs), tunable across 1033–1059 nm has been demonstrated. An optical-to-optical efficiency of about 28% has been obtained with 320 fs long pulses. Therefore, contrarily to what previously believed, compact diode-pumped ultrafast Yb:YAG oscillators can reliably and efficiently deliver pulses in the range of ≈ 100–200 fs with few tens of mW, which are very appealing for bio-diagnostics and amplifier seeding applications.  相似文献   

8.
A high-power yellow laser was achieved by intracavity frequency doubling of a diode-pumped Nd:YAG rod laser. A solid etalon was inserted into the resonator to implement efficient operation of the low-gain single line at 1123 nm transition. By using a LBO crystal inside the cavity as the frequency doubler, the maximum output power of the 561 nm yellow laser was obtained to be as high as 60.3 W with a pulse repetition frequency of 6 kHz, corresponding to an optical-to-optical conversion efficiency of about 6.1%. The output power fluctuation of the yellow laser was measured to be better than 3% in half an hour.  相似文献   

9.
We report on a LD-end-pumped passively Q-switched Nd:YAG ceramic laser by using a novel single wall carbon nanotube saturable absorber (SWCNT-SA). The SWCNT wafer was fabricated by electric Arc discharge method on quartz substrate with absorption wavelength of 1064 nm. We firstly investigated the continuous wave (CW) laser performance and scattering properties of Nd:YAG ceramic sample. For the case of passively Q-switched operation, a maximum output power of 376 mW was obtained at an incident pump power of 8.68 W at 808 nm, corresponding to an optical–optical conversion efficiency of 4.3%. The repetition rate as the increase of pump power varied from 14 to 95 kHz. The minimum pulse duration of 1.2 μs and maximum pulse energy of 4.5 μJ was generated at a repetition rate of 31.8 kHz.  相似文献   

10.
A compact intra-cavity pumped low threshold continuous-wave Ho:Sc2SiO5 laser is reported. The characteristics of output wavelength tuning are investigated by use a intra-cavity briefringent (BF) filter. A wavelength tunable range of 140 nm from 2020 to 2160 nm is achieved. For the free-running mode, the laser slope efficiency is 24.8%, when the output central wavelength is 2110 nm. The laser threshold is about 820 mW of incident pump power. With the BF filter, a maximum output power of 870 mW is obtained at the incident pump power of 5 W, corresponding to a slope efficiency of 20.3%. The characteristics of output wavelength verse the crystal temperature are also investigated.  相似文献   

11.
High-peak-power, short-pulse-width diode pumped 946 nm Nd:YAG laser in passively Q-switching operation with Cr4+:YAG is reported. The highest average output power reaches 3.4 W using the Cr4+:YAG with initial transmissivity T0=95%. When the T0=90% Cr4+:YAG is employed, the maximum peak power of 31.4 kW with a pulse width of 8.3 ns at 946 nm is generated.  相似文献   

12.
We present a Tm-doped fiber laser pumped Fabry-Perot etalons Ho:YAG laser based on a corner cube.A maximum single-longitudinal-mode and fundamental transverse mode output power of 478 mW at the waveiength of 2091.06 nm is achieved with a pump power of 16.3 W,corresponding to an opticai-to-optical efficiency of 2.9%and a slope efficiency of 7.9%.The single-longitudinal-mode and fundamental transverse mode are less sensitive to the rotating of the corner cube.The results indicate the potential impact of a single-longitudinal-mode Ho:YAG laser with corner cube geometry to improve the anti-maladjustment stability.  相似文献   

13.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

14.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

15.
By reasonably assuming the distribution of the pump light in laser medium, the equations about the absorption and the gain for the end-pumped lasers are applied to the side-pumped ones, and a theoretical model for laser-diode side-pumped continuous wave intracavity-frequency-doubling lasers is given, in which the thermally induced diffraction loss and the variation of the fundamental wave radii with the pump power are considered. By using a Z-type cavity, a laser-diode side-pumped continuous wave Nd:YAG/KTP green laser is realized. The threshold pump power is 15 W, and the highest output power of the green laser is 3.75 W at the pump power of 160 W, corresponding to an optical–optical slope efficiency 2.6%. The experimental results are consistent with the numerical solutions.  相似文献   

16.
A Nd:YAG laser passively Q-switched by a Cr:YAG showed a high single pulse energy of 53.0 mJ and 5.1 MW peak power. The laser was pumped by quasi-continuous-wave diode bars from single side. The Q-switched pulse had optical-to-optical efficiency of 12% and average temporal duration of 10.4 ns when Cr:YAG with initial transmission of 9.0% was used. Intense pumping as well as very low initial transmission of the saturable absorber gave very high peak power.  相似文献   

17.
A broadband tunable, single-longitudinal-mode (SLM) Ytterbium fiber laser with unpumped Ytterbium-doped Sagnac loop is proposed and demonstrated experimentally. The unpumped Ytterbium-doped Sagnac loop is employed as a saturable absorber based auto-tracking filter to ensure single-longitudinal-mode oscillation. And a tunable band pass optical filter with large tuning range is applied to achieve broadband tuning ability. With 1-m Ytterbium-doped fiber as the gain medium, the SLM operation is achieved with over 60-nm wavelength tuning range at 160-mW pump power. The laser is very stable with output power of about 3 dBm and optical signal to noise ratio of higher than 50 dB in all the 60-nm tuning range.  相似文献   

18.
Xiuyan Chen  Jintao Bai  Zhaoyu Ren  Dan Sun 《Optik》2012,123(14):1245-1248
To obtain 1064 nm/532 nm/660 nm three wavelength lasers operating simultaneously or singly, a novel LD side-pumped Nd3+:YAG laser system with acousto-optic Q-switched and nonlinear frequency conversion technologies was investigated. When the three wavelength lasers output singly and the Pumping power was 103 W, 1064 nm laser was 14.5 W and the green and red lasers reached 4.7 W and 1.6 W, respectively, at the repetition rate of 10.5 kHz and 11.5 kHz. When they worked simultaneously, the red, green and infrared lasers were obtained with the output power distribution of 1.0 W at 660 nm, 4.3 W at 532 nm and 10.1 W at 1064 nm, and the instability was less than 2% within 3 h.  相似文献   

19.
A compact erbium-doped ring-shaped fiber laser suitable for fiber-optic sensing applications has been developed. The fiber laser utilized a tunable fiber Fabry–Perot filter as the tuning element and had a moderate milli-Watt level power output over almost the whole tuning range from 1530 to 1595 nm with a power fluctuation of 0.15 dB. High repetition rate scanning of laser operation over the whole tuning range was achieved at rates of up to 200 Hz. Moreover, the performance of the ring-shaped fiber laser configured with a high-concentration erbium-doped fiber was investigated for its larger wavelength tunability of over 100 nm. Output power characteristics of this ring-shaped fiber laser were also investigated when it worked in a scanning mode. A distorted power wavelength dependence, as well as some pulsing phenomenon were observed in scanning mode.  相似文献   

20.
A simple, continuously tunable dual-wavelength erbium-doped fiber ring laser (TDEDFL) structure for applications in high-speed communication systems is proposed and experimentally demonstrated. The dual-wavelength tuning range is 58 nm covering both the C-band and L-band from 1547 to 1605 nm. We can not only obtain a 45% improvement over previously reported tuning ranges, but also tune the wavelength of each lasing output independently. The power equalization of the dual-wavelength outputs is less than 1.5 dB. We obtain extremely stable power variation and wavelength fluctuation at room temperature. Using this fiber laser, a 10-Gb/s data transmission over a 25-km single-mode fiber (SMF) can be made available with a power penalty of 0.5 dB is demonstrated with this laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号