首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Patrick Mehlitz 《Optimization》2017,66(10):1533-1562
We consider a bilevel programming problem in Banach spaces whose lower level solution is unique for any choice of the upper level variable. A condition is presented which ensures that the lower level solution mapping is directionally differentiable, and a formula is constructed which can be used to compute this directional derivative. Afterwards, we apply these results in order to obtain first-order necessary optimality conditions for the bilevel programming problem. It is shown that these optimality conditions imply that a certain mathematical program with complementarity constraints in Banach spaces has the optimal solution zero. We state the weak and strong stationarity conditions of this problem as well as corresponding constraint qualifications in order to derive applicable necessary optimality conditions for the original bilevel programming problem. Finally, we use the theory to state new necessary optimality conditions for certain classes of semidefinite bilevel programming problems and present an example in terms of bilevel optimal control.  相似文献   

2.
Second-Order Optimality Conditions in Generalized Semi-Infinite Programming   总被引:3,自引:0,他引:3  
This paper deals with generalized semi-infinite optimization problems where the (infinite) index set of inequality constraints depends on the state variables and all involved functions are twice continuously differentiable. Necessary and sufficient second-order optimality conditions for such problems are derived under assumptions which imply that the corresponding optimal value function is second-order (parabolically) directionally differentiable and second-order epiregular at the considered point. These sufficient conditions are, in particular, equivalent to the second-order growth condition.  相似文献   

3.
We propose a path following method to find the Pareto optimal solutions of a box-constrained multiobjective optimization problem. Under the assumption that the objective functions are Lipschitz continuously differentiable we prove some necessary conditions for Pareto optimal points and we give a necessary condition for the existence of a feasible point that minimizes all given objective functions at once. We develop a method that looks for the Pareto optimal points as limit points of the trajectories solutions of suitable initial value problems for a system of ordinary differential equations. These trajectories belong to the feasible region and their computation is well suited for a parallel implementation. Moreover the method does not use any scalarization of the multiobjective optimization problem and does not require any ordering information for the components of the vector objective function. We show a numerical experience on some test problems and we apply the method to solve a goal programming problem.  相似文献   

4.
We consider the optimal control problem for systems described by nonlinear equations of elliptic type. If the nonlinear term in the equation is smooth and the nonlinearity increases at a comparatively low rate of growth, then necessary conditions for optimality can be obtained by well-known methods. For small values of the nonlinearity exponent in the smooth case, we propose to approximate the state operator by a certain differentiable operator. We show that the solution of the approximate problem obtained by standard methods ensures that the optimality criterion for the initial problem is close to its minimal value. For sufficiently large values of the nonlinearity exponent, the dependence of the state function on the control is nondifferentiable even under smoothness conditions for the operator. But this dependence becomes differentiable in a certain extended sense, which is sufficient for obtaining necessary conditions for optimality. Finally, if there is no smoothness and no restrictions are imposed on the nonlinearity exponent of the equation, then a smooth approximation of the state operator is possible. Next, we obtain necessary conditions for optimality of the approximate problem using the notion of extended differentiability of the solution of the equation approximated with respect to the control, and then we show that the optimal control of the approximated extremum problem minimizes the original functional with arbitrary accuracy.  相似文献   

5.
This paper surveys some basic properties of the class of generalized semi-infinite programming problems (GSIP) where the infinite index set of inequality constraints depends on the state variables and all emerging functions are assumed to be continuously differentiable. There exists a wide range of applications which can be modelled as a (GSIP). The paper discusses extensions of the Mangasarian-Fromovitz, Kuhn-Tucker and Abadie constraint qualification to (GSIP) and presents related first order optimality conditions of Fritz-John and Karush-Kuhn-Tucker type. By using directional differentiability properties of the optimal value function of the lower level problem, first and second order necessary and sufficient optimality conditions are discussed. Several examples illustrate the results presented. The work of this author was supported by CONACYT (México) under grant 44003.  相似文献   

6.
In this paper, we consider a nonsmooth optimization problem with a convex feasible set described by constraint functions which are neither convex nor differentiable nor locally Lipschitz necessarily. Utilizing upper regular convexificators, we characterize the normal cone of the feasible set and derive KKT type necessary and sufficient optimality conditions. Under some assumptions, we show that the set of KKT multipliers is bounded. We also characterize the set of optimal solutions and introduce a linear approximation corresponding to the original problem which is useful in checking optimality. The obtained outcomes extend various results existing in the literature to a more general setting.  相似文献   

7.
In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.  相似文献   

8.
In this two-part study, we develop a unified approach to the analysis of the global exactness of various penalty and augmented Lagrangian functions for constrained optimization problems in finite-dimensional spaces. This approach allows one to verify in a simple and straightforward manner whether a given penalty/augmented Lagrangian function is exact, i.e., whether the problem of unconstrained minimization of this function is equivalent (in some sense) to the original constrained problem, provided the penalty parameter is sufficiently large. Our approach is based on the so-called localization principle that reduces the study of global exactness to a local analysis of a chosen merit function near globally optimal solutions. In turn, such local analysis can be performed with the use of optimality conditions and constraint qualifications. In the first paper, we introduce the concept of global parametric exactness and derive the localization principle in the parametric form. With the use of this version of the localization principle, we recover existing simple, necessary, and sufficient conditions for the global exactness of linear penalty functions and for the existence of augmented Lagrange multipliers of Rockafellar–Wets’ augmented Lagrangian. We also present completely new necessary and sufficient conditions for the global exactness of general nonlinear penalty functions and for the global exactness of a continuously differentiable penalty function for nonlinear second-order cone programming problems. We briefly discuss how one can construct a continuously differentiable exact penalty function for nonlinear semidefinite programming problems as well.  相似文献   

9.
10.
This tutorial presents an introduction to generalized semi-infinite programming (GSIP) which in recent years became a vivid field of active research in mathematical programming. A GSIP problem is characterized by an infinite number of inequality constraints, and the corresponding index set depends additionally on the decision variables. There exist a wide range of applications which give rise to GSIP models; some of them are discussed in the present paper. Furthermore, geometric and topological properties of the feasible set and, in particular, the difference to the standard semi-infinite case are analyzed. By using first-order approximations of the feasible set corresponding constraint qualifications are developed. Then, necessary and sufficient first- and second-order optimality conditions are presented where directional differentiability properties of the optimal value function of the so-called lower level problem are used. Finally, an overview of numerical methods is given.  相似文献   

11.
卫星舱布局的半无限优化模型及最优性条件   总被引:3,自引:0,他引:3  
本文以人造卫星仪器舱布局问题为背景,建立了一个半无限优化模型。应用图论、群对集合的作用、轨道等,把该问题分解为有限多个子问题,在每个子问题中克服了关于优化变量的时断时续性质。针对每个子问题分析了模型中各函数的性质,并构造了一个局部等价于子问题的极大极小问题。利用这个极大极小问题及子问题中各函数的方向可微性给出了子问题的一阶最优性条件。  相似文献   

12.
本文讨论上层目标函数以下层子系统目标函数的最优值作为反馈的一类二层凸规划的对偶规划问题 ,在构成函数满足凸连续可微等条件的假设下 ,建立了二层凸规划的 Lagrange对偶二层规划 ,并证明了基本对偶定理 .  相似文献   

13.
The global solutions of the problem of maximizing a convex function on a convex set were characterized by several authors using the Fenchel (approximate) subdifferential. When the objective function is quasiconvex it was considered the differentiable case or used the Clarke subdifferential. The aim of the present paper is to give necessary and sufficient optimality conditions using several subdifferentials adequate for quasiconvex functions. In this way we recover almost all the previous results related to such global maximization problems with simple proofs.  相似文献   

14.
考虑一类非线性不等式约束的非光滑minimax分式规划问题;目标函数中的分子是可微函数与凸函数之和形式而分母是可微函数与凸函数之差形式,且约束函数是可微的.在Arrow- Hurwicz-Uzawa约束品性下,给出了这类规划的最优解的Kuhn-Tucker型必要条件.所得结果改进和推广了已有文献中的相应结果.  相似文献   

15.
In this paper, we consider the least l 2-norm solution for a possibly inconsistent system of nonlinear inequalities. The objective function of the problem is only first-order continuously differentiable. By introducing a new smoothing function, the problem is approximated by a family of parameterized optimization problems with twice continuously differentiable objective functions. Then a Levenberg–Marquardt algorithm is proposed to solve the parameterized smooth optimization problems. It is proved that the algorithm either terminates finitely at a solution of the original inequality problem or generates an infinite sequence. In the latter case, the infinite sequence converges to a least l 2-norm solution of the inequality problem. The local quadratic convergence of the algorithm was produced under some conditions.  相似文献   

16.
In this paper, directional differentiability properties of the optimal value function of a parameterized semi-infinite programming problem are studied. It is shown that if the unperturbed semi-infinite programming problem is convex, then the corresponding optimal value function is directionally differentiable under mild regularity assumptions. A max-min formula for the directional derivatives, well-known in the finite convex case, is given.  相似文献   

17.
This paper is devoted to the study of the first-order behavior of the value function of a parametric discrete optimal control problem with nonconvex cost functions and control constraints. By establishing an abstract result on the Mordukhovich subdifferential of the value function of a parametric mathematical programming problem, we derive a formula for computing the Mordukhovich subdifferential of the value function to a parametric discrete optimal control problem.  相似文献   

18.
In the classical (“smooth”) mathematical analysis, a differentiable function is studied by means of the derivative (gradient in the multidimensional space). In the case of nondifferentiable functions, the tools of nonsmooth analysis are to be employed. In convex analysis and minimax theory, the corresponding classes of functions are investigated by means of the subdifferential (it is a convex set in the dual space), quasidifferentiable functions are treated via the notion of quasidifferential (which is a pair of sets). To study an arbitrary directionally differentiable function, the notions of upper and lower exhausters (each of them being a family of convex sets) are used. It turns out that conditions for a minimum are described by an upper exhauster, while conditions for a maximum are stated in terms of a lower exhauster. This is why an upper exhauster is called a proper one for the minimization problem (and an adjoint exhauster for the maximization problem) while a lower exhauster will be referred to as a proper one for the maximization problem (and an adjoint exhauster for the minimization problem). The directional derivatives (and hence, exhausters) provide first-order approximations of the increment of the function under study. These approximations are positively homogeneous as functions of direction. They allow one to formulate optimality conditions, to find steepest ascent and descent directions, to construct numerical methods. However, if, for example, the maximizer of the function is to be found, but one has an upper exhauster (which is not proper for the maximization problem), it is required to use a lower exhauster. Instead, one can try to express conditions for a maximum in terms of upper exhauster (which is an adjoint one for the maximization problem). The first to get such conditions was Roshchina. New optimality conditions in terms of adjoint exhausters were recently obtained by Abbasov. The exhauster mappings are, in general, discontinuous in the Hausdorff metric, therefore, computational problems arise. To overcome these difficulties, the notions of upper and lower coexhausters are used. They provide first-order approximations of the increment of the function which are not positively homogeneous any more. These approximations also allow one to formulate optimality conditions, to find ascent and descent directions (but not the steepest ones), to construct numerical methods possessing good convergence properties. Conditions for a minimum are described in terms of an upper coexhauster (which is, therefore, called a proper coexhauster for the minimization problem) while conditions for a maximum are described in terms of a lower coexhauster (which is called a proper one for the maximization problem). In the present paper, we derive optimality conditions in terms of adjoint coexhausters.  相似文献   

19.
This paper studies the risk minimization problem in semi-Markov decision processes with denumerable states. The criterion to be optimized is the risk probability (or risk function) that a first passage time to some target set doesn't exceed a threshold value. We first characterize such risk functions and the corresponding optimal value function, and prove that the optimal value function satisfies the optimality equation by using a successive approximation technique. Then, we present some properties of optimal policies, and further give conditions for the existence of optimal policies. In addition, a value iteration algorithm and a policy improvement method for obtaining respectively the optimal value function and optimal policies are developed. Finally, two examples are given to illustrate the value iteration procedure and essential characterization of the risk function.  相似文献   

20.
Patrick Mehlitz 《Optimization》2016,65(6):1203-1227
This article is dedicated to the study of bilevel optimal control problems equipped with a fully convex lower level of special structure. In order to construct necessary optimality conditions, we consider a general bilevel programming problem in Banach spaces possessing operator constraints, which is a generalization of the original bilevel optimal control problem. We derive necessary optimality conditions for the latter problem using the lower level optimal value function, ideas from DC-programming and partial penalization. Afterwards, we apply our results to the original optimal control problem to obtain necessary optimality conditions of Pontryagin-type. Along the way, we derive a handy formula, which might be used to compute the subdifferential of the optimal value function which corresponds to the lower level parametric optimal control problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号