首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive a general relation between the fine-structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs quantum dots. The work provides deep insight into the dot asymmetry and their optical properties and a useful guide in selecting quantum dots with the smallest FSS, which are crucial in entangled photon source applications.  相似文献   

2.
The temperature dependence of spin coherence in InGaAs quantum dots is obtained from quantum beats observed in polarization-resolved pump-probe experiments. Within the same sample we clearly distinguish between coherent spin dynamics leading to quantum beats and incoherent long-lived spin-memory effects. Analysis of the coherent data using a theoretical model reveals approximately 10 times greater stability of the spin coherence at high temperature compared to that found previously for exciton states in four-wave-mixing experiments by Borri et al. [Phys. Rev. Lett. 87, 157401 (2001)]]. The data on incoherent polarization reveal a new form of spin memory based on charged quantum dots.  相似文献   

3.
We present a scheme for achieving coherent spin squeezing of nuclear spin states in semiconductor quantum dots. The nuclear polarization dependence of the electron spin resonance generates a unitary evolution that drives nuclear spins into a collective entangled state. The polarization dependence of the resonance generates an area-preserving, twisting dynamics that squeezes and stretches the nuclear spin Wigner distribution without the need for nuclear spin flips. Our estimates of squeezing times indicate that the entanglement threshold can be reached in current experiments.  相似文献   

4.
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.  相似文献   

5.
A nondestructive parity‐check detector (PCD) scheme for two single‐electron quantum dots embedded in double‐sided optical microcavities is presented here. Using a polarization‐entangled photon pair, the PCD works in a parallel style and is robust to the phase fluctuation of the optical path length. In addition, based on this nondestructive PCD, an economic entanglement purification protocol for electron pairs is presented. The parties in quantum communication can increase the purification efficiency and simultaneously decrease the quantum source consumed for some particular fidelity thresholds. Therefore, this protocol has good applications in the future quantum communication and distributed quantum networks.  相似文献   

6.
Entangled photons can be generated "on demand" in a novel scheme involving unitary time reordering of the photons emitted in a radiative decay cascade. The scheme yields polarization entangled photon pairs, even though prior to reordering the emitted photons carry significant "which path information" and their polarizations are unentangled. This shows that quantum chronology can be manipulated in a way that is lossless and deterministic (unitary). The theory can, in principle, be tested and applied to the biexciton cascade in semiconductor quantum dots.  相似文献   

7.
We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.  相似文献   

8.
We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, with one excess electron, coupled by tunneling. It is shown how to create a maximally entangled state using an adiabatically increasing Coulomb repulsion between different dot pairs. This entangled state is exploited to perform teleportation again using an adiabatic coupling between itself and the incoming unknown state. Finally, a sudden separation of Bob's qubit allows a time evolution of Alice's, which amounts to a modified version of standard Bell measurement. A transmission over a long distance could be obtained by considering the entangled state of a chain of N coupled double quantum dots. The system is shown to be increasingly robust with N against decoherence due to phonons.  相似文献   

9.
《Current Applied Physics》2015,15(6):733-738
Optical anisotropy of self-assembled elliptical InP quantum dots has been investigated in terms of the polarization dependence of excitons. Although large size inhomogeneity is present, two kinds of characteristic quantum dots, which are classified into large and small quantum dots, were found in terms of the polarization anisotropy. We have confirmed that the large quantum dots are more pronounced in the polarization anisotropy, where the degree of linear polarization for the large quantum dots is significantly larger (∼60%) than that for the small ones (∼36%). The effective shape of quantum dots is also estimated by using the size dependence of oscillator strength, which is in agreement with the AFM image. We also suggest that the anisotropy of exciton oscillator strength can be modified via the dipole–dipole interaction between nearest exciton dipoles.  相似文献   

10.
谭华堂  甘仲惟  李高翔 《物理学报》2005,54(3):1178-1183
研究了与压缩真空库场耦合的单模腔中三个量子点中激子间纠缠的动力学行为.结果表明:如果不考虑腔模与激子吸收,激子演化为纯的纠缠态.当腔场与一压缩真空库耦合时,激子间形成混合三模高斯纠缠态;在长时极限下,激子态为一稳定的混合三模高斯纠缠态.通过求解激子的特征函数,发现激子态的纯度与纠缠不仅依赖于腔场的初态,并且还与库的双光子关联强度密切相关. 关键词: 纠缠 纯度 压缩真空库 量子点  相似文献   

11.
It is common belief among physicists that entangled states of quantum systems lose their coherence rather quickly. The reason is that any interaction with the environment which distinguishes between the entangled sub-systems collapses the quantum state. Here we investigate entangled states of two trapped Ca+ ions and observe robust entanglement lasting for more than 20 s.  相似文献   

12.
Resource-efficient linear optical quantum computation   总被引:1,自引:0,他引:1  
We introduce a scheme for linear optics quantum computation, that makes no use of teleported gates, and requires stable interferometry over only the coherence length of the photons. We achieve a much greater degree of efficiency and a simpler implementation than previous proposals. We follow the "cluster state" measurement based quantum computational approach, and show how cluster states may be efficiently generated from pairs of maximally polarization entangled photons using linear optical elements. We demonstrate the universality and usefulness of generic parity measurements, as well as introducing the use of redundant encoding of qubits to enable utilization of destructive measurements--both features of use in a more general context.  相似文献   

13.
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.  相似文献   

14.
A solid state quantum circuit where an ensemble of self-assembled quantum dots in a microdisk cavity served as long-lived quantum light memory, is investigated. It is shown that via laser coupling Raman process, the coherent transfer between the light field (qubits) and the ensemble spin states of the quantum dots can be efficient and fast. The coherence properties of the system are analyzed, which enables us to obtain a long coherence time.  相似文献   

15.
《Neutron News》2012,23(4):12-17
Multiparticle quantum entanglement (QE) and its dynamical properties are in the focus of several experimental and theoretical fields of modern physics and engineering (e.g., quantum optics, quantum computation, quantum cryptography, and teleportation). This is due to the potential applicability of QE for quantum computers and quantum information technology. If the quantum entangled particles are sufficiently isolated from their environment, coherence can persist for long times and quantum phenomena are revealed. However, under realistic conditions, the entangled objects are continuously interacting with their environment. Thus, coherence is lost and classicality emerges. This process is called decoherence [1] and represents the main problem for the realization of a quantum computer.  相似文献   

16.
Scalable quantum networks require the capability to create, store and distribute entanglement among distant nodes (atoms, trapped ions, charge and spin qubits built on quantum dots, etc.) by means of photonic channels. We show how the entanglement between qubits and electromagnetic field modes allows generation of entangled states of remotely located qubits. We present analytical calculations of linear entropy and the density matrix for the entangled qubits for the system described by the Jaynes-Cummings model. We also discuss the influence of decoherence. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing.  相似文献   

17.
Xing-Tao An 《Physics letters. A》2008,372(45):6790-6796
Spin polarization in parallel double quantum dots embedded in arms of Aharonov-Bohm interferometer is investigated. The spin-orbit interaction exists in quantum dots. We find that the spin polarization is quite large even with a weak spin-orbit interaction. The direction and the strength of the spin polarization are well controllable and manipulatable by simply varying the strength of spin-orbit interaction or the energy levels in quantum dots. Moreover, electron-electron interaction strengthens the spin accumulation when the energy levels of the two quantum dots are identical. As the energy levels are unequal, electron-electron interaction cannot increase the spin accumulation. It is worth mentioning that the device is free of a magnetic field or a ferromagnetic material and it can be easily realized with present technology.  相似文献   

18.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson’s numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.  相似文献   

19.
具有经典相干性的两组EPR纠缠态光场的实验产生   总被引:3,自引:0,他引:3       下载免费PDF全文
纠缠交换,即纠缠态的量子离物传送,是实现远程量子通讯及量子信息网络的必要手段之一 . 要完成纠缠交换实验,首先必须具有两组相互独立的纠缠源. 对于连续变量系统,两独立 的纠缠源为具有经典相干但量子起伏互不关联的两组EPR纠缠态光场. 利用自行研制的瓦级 连续双波长输出Nd3+: YAP/KTP稳频激光器为抽运源,抽运两台结 构完全相同的非简 并光学参量放大器,获得了具有经典相干性的两组独立的EPR纠缠光束. 讨论了两组具有经 典相干性的EPR光束产生的实验方法,及不完善模匹配效率对关联测量的影响. 关键词: EPR纠缠态光场 经典相干 非简并光学参量放大器  相似文献   

20.
The ability to control the nucleation site of a single quantum dot will have a profound effect on the development of quantum dot‐based photonic devices. The deterministic approach will provide a truly scalable technology that can take full advantage of conventional semiconductor processing for device fabrication. In this review, we discuss the progress towards the integration of deterministically nucleated single quantum dots with top‐down quantum optical devices targeting telecommunication wavelengths. Advances in site‐controlled quantum dot nucleation using selective‐area epitaxy now makes it possible to position quantum dots at predetermined positions on a substrate in registry with alignment markers. This, in turn, has allowed for devices fabricated in subsequent processing steps to be aligned to individual quantum dots. The specific devices being targeted are gated‐single dots and coupled dot‐cavity systems which are key components of efficient sources of single photons and entangled photon pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号