首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Single sided multi-port system identification techniques, using sinusoidal excitation, for studying nonlinear energy transfer to higher harmonics for samples only accessible from one side such as perforated liners used as wall treatment in aircraft engine ducts are presented. The starting point is the so called polyharmonic distortion theory used for studying microwave systems. Models of different level of complexity are developed and the system identification results are compared. Experimental results, including error analysis, for a perforate sample are presented. The use of these techniques for analysing nonlinear energy transfer to higher harmonics and to improve the understanding of the physical phenomena involved are illustrated.  相似文献   

2.
The in-duct source can be characterized by two acoustical parameters such as the source strength and the source impedance, which permit the prediction of radiated sound pressure or insertion loss of the whole duct system. One-port acoustic characteristics of an in-duct source can be measured by the multiload method using an overdetermined set of open pipes or side-branch pipes with different lengths as applied loads. The input data, viz. load pressure and load impedance, are usually contaminated by measurement error in the actual measurements, which result in errors in the calculated source parameters. In this paper, the effects of the errors in the input data on the results have been studied numerically, varying the number of loads and their impedances in order to determine what combination of the loads will yield the best result. It is noted that, frequently, only a set of open pipes is used when applying the multiload method to the internal combustion engine sources. A set of pipe lengths, which cause the calculated results to be least sensitive to the input data error, can be found when using open pipe loads. The present work is intended to produce guidelines for preparing an appropriate load set in order to obtain accurate source properties of fluid machines.  相似文献   

3.
Ning Han  C.M. Mak   《Applied Acoustics》2008,69(6):566-573
Flow-generated noise problem caused by in-duct elements is due to the complicated acoustic and turbulent interactions of multiple in-duct flow noise sources. The approach of partially coherent sound fields used previously by Mak and Yang [C.M. Mak, J. Yang, Flow-generated noise radiated by the interaction of two strip spoilers in a low speed flow ducts, Acta Acust united with Acustica 88 (2002) 861–868] and Mak [C.M. Mak, A prediction method for aerodynamic sound produced by multiple elements in air ducts, J Sound Vib 287 (2005) 395–403] is adopted to formulate the sound powers produced by interactions of multiple elements at frequencies below and above the cut-on frequency of the lowest transverse duct mode. The study indicates that the level and spectral distribution of the additional acoustic energy produced by the interactions of multiple elements can be predicted based on the measured data with respect to the interactions. The proposed method can form a basis of a generalized prediction method for flow-generated noise produced by multiple elements. The application of the proposed method is supported by two engineering examples.  相似文献   

4.
In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.  相似文献   

5.
The attenuation of sound due to the interaction between a low Mach number turbulent boundary layer and acoustic waves can be significant at low frequencies or in narrow tubes. In a recent publication by the present authors the acoustics of charge air coolers for passenger cars has been identified as an interesting application where turbulence attenuation can be of importance. Favourable low-frequency damping has been observed that could be used for control of the in-duct sound that is created by the engine gas exchange process. Analytical frequency-dependent models for the eddy viscosity that controls the momentum and thermal boundary layers are available but are restricted to thin acoustic boundary layers. For cases with cross-sections of a few millimetres a model based on thin acoustic boundary layers will not be applicable in the frequency range of interest.In the present paper a frequency-dependent axis-symmetric numerical model for interaction between turbulence and acoustic waves is proposed. A finite element scheme is used to formulate the time harmonic linearized convective equations for conservation of mass, momentum and energy into one coupled system of equations. The turbulence is introduced with a linear model for the eddy viscosity that is added to the shear viscosity. The proposed model is validated by comparison with experimental data from the literature.  相似文献   

6.
Multi-mode sound transmission in ducts with flow   总被引:1,自引:0,他引:1  
Exhaust mufflers, large exhaust stacks, and turbofan engines are common examples of ducted noise. The most useful measure of the sound produced by these noise sources is the sound power transmitted along the duct. When airflow is present, sound power flow can no longer be uniquely determined from the usual measurements of acoustic pressure and particle velocity.One approach to sound power determination from in-duct pressure measurement, and the one discussed in this paper, is to predict the relationship between the sound power and pressure based upon an assumed mode amplitude distribution. This paper investigates the relationship between acoustic pressure and power for a family of idealized source distributions of arbitrary temporal and spatial order. Incoherent monopole and dipole sources uniformly distributed over a duct cross-section can be obtained as special cases. This paper covers the sensitivity of the pressure-power relationship to source multipole order, frequency and, in particular, flow speed. It is shown that the introduction of flow in a hard-walled duct can have a substantial effect on the behavior of the pressure-power relationship for certain source distributions. Preliminary experimental results in a no-flow facility are presented in order to verify some of the main results.  相似文献   

7.
李庭  马昕 《声学学报》2015,40(5):710-716
采用有限元数值计算得到了马铁菊头蝠声道内部的声场分布,给出了马铁菊头蝠声道内几种特殊的腔体结构在蝙蝠发声过程中的作用。通过微型CT扫描并经过三维重构得到了马铁菊头蝠声道的三维立体模型用于有限元数值计算,通过在声门处放置单位声源计算得到了整个声道内部以及鼻孔周围的声压分布。结果表明,马铁菊头蝠声道包含了鼻腔结构后声波在声门上方的声压幅度明显大于不含鼻腔结构的情况,从传输曲线来看,声门上方鼻腔的存在使得系统对声波传输在二次谐波频率处呈现低阻抗效果,同时鼻腔的改变还可影响二次谐波的位置。而声门下方的气管空腔主要影响声波的背向转播,声门下方的气管空腔的存在可明显降低蝙蝠发声时声场在声道声门下方的声压幅度,同时抑制声音背向传播时二次谐波成分的强度。   相似文献   

8.
The results of studying the physical characteristics of unidirectional acoustic sources used in active sound control systems are presented. A discrete unidirectional source in the form of two phased monopoles and a planar array of such unidirectional sources are considered. One-dimensional boundary-value problems with two (the two-point problem) and three (the three-point problem) controlled parallel planar boundaries between homogeneous media with arbitrary impedances are studied. The boundaries (two or three) are subjected to the action of external forces. The case of the zero sum of external forces applied to the controlled boundaries corresponds to a supportless unidirectional source. It is shown that a unidirectional source can be created within the two-point boundary-value problem, whereas a supportless unidirectional source can be created within the three-point problem. Such parameters as transparency, small size, absence of support, and broad frequency band can be achieved for a unidirectional source in the form of two piezoelectric layers with the same impedance and velocity of sound as those of the surrounding medium.  相似文献   

9.
曹娜  陈时  曹辉  王成会  刘航 《物理学报》2020,(3):163-169
提出了一种新的求解非线性波动方程的数值迭代法,它是一种半解析的方法.与完全的数值计算方法扰法相比,它能够考虑各阶谐波的相互作用,且能够满足能量守恒定律.用它研究了非线性声波在液体中的传播性质,结果表明,在微扰法适用的声强范围内迭代法也适用,在微扰法不适用的一个较宽的声强范围内迭代法依然适用.  相似文献   

10.
Sound measured at various points around the environment can be evaluated by a series of multi-pole sources and their acoustic strength can be acquired. In this numerical study, a method, called the inverse method, was examined to achieve this goal. A variety of arrangements of different sources were considered and the acoustic strength of these sources was acquired. Through the application of the mismatch criterion, good conformity was observed between these sound models and the original sound. Furthermore, with regard to results, sound was generated via different source arrangements which showed acceptable agreement with the original sound. Finally, an arrangement named ‘sources vertical arrangement’ was selected as the best approach.  相似文献   

11.
In a sono-reactor, complex ultrasound pressure wave signal can be detected, containing multiple information related to acoustic cavitation. In this present study, acoustic cavitation in a cylinder is investigated numerically. Via Fast Fourier Transfer (FFT), the sound pressure signals from sonotrode emitting surface are separated into harmonics, sub/ultra-harmonics and cavitation white noise: (1) the appearance of harmonics proved the non-linear propagation of ultrasound, (2) at the vibratory amplitude from 5∼20μm, only harmonics exists in the frequency spectra, corresponding to expansion and compression of non-condensable gas (NCG), (3) at the vibratory amplitude range of 30∼50μm, the occurrence of sub/ultra-harmonics demonstrated gaseous cavitation occurred, and (4) at the vibratory amplitude higher than 55μm, cavitation white noise arose, pointing out the initiation of vaporous cavitation. Based on the combination of frequency spectra and cavitation zones distribution, the acoustic cavitation state in water liquid is determined.  相似文献   

12.
Near-field acoustic holography (NAH) is an effective tool for visualizing acoustic sources from pressure measurements made in the near-field of sources using a microphone array. The method involving the Fourier transform and some processing in the frequency-wavenumber domain is suitable for the study of stationary acoustic sources, providing an image of the spatial acoustic field for one frequency. When the behavior of acoustic sources fluctuates in time, NAH may not be used. Unlike time domain holography or transient method, the method proposed in the paper needs no transformation in the frequency domain or any assumption about local stationary properties. It is based on a time formulation of forward sound prediction or backward sound radiation in the time-wavenumber domain. The propagation is described by an analytic impulse response used to define a digital filter. The implementation of one filter in forward propagation and its inverse to recover the acoustic field on the source plane implies by simulations that real-time NAH is viable. Since a numerical filter is used rather than a Fourier transform of the time-signal, the emission on a point of the source may be rebuilt continuously and used for other post-processing applications.  相似文献   

13.
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach (based on a Fourier series representation of the propagating wave) are given for circular source geometry, which represents the most challenging case from the computational time point of view. For two cases, short (2 cycle) and long (8 cycle) 2 MHz bursts, the computational times were 10 min and 15 min versus 2 h and 8 h for the TAWE method versus the conventional method, respectively.  相似文献   

14.
厅堂声学测量中不同激励声源的比较   总被引:3,自引:0,他引:3       下载免费PDF全文
孟子厚 《应用声学》2005,24(1):19-23
基於脉冲响应积分的音乐厅和剧院观众厅声学特性的测量目前有三种使用不同激励声源的测试方法:人工脉冲声源、伪随机噪声序列(MLS)、以及用正弦扫频信号。这些技术各有其优缺点,在实际应用中为了方便根据具体情况选择不同的激励声源,通过在一个音乐厅现场的实测数据比较丁三种声源的实测结果,发现对混响时间测量三种不同的激励声源给出的结果基本一致,但是对明晰度和一些其他的指标,脉冲声源给出的结果与用MLS和扫频信号给出的结果有较明显的差别。对实际中如何选择具体的技术也做了建议。  相似文献   

15.
The radiation patterns of acoustic sources have great significance in a wide range of applications, such as measuring the directivity of loudspeakers and investigating the radiation of musical instruments for auralization. Recently, surrounding spherical microphone arrays have been studied for sound field analysis, facilitating measurement of the pressure around a sphere and the computation of the spherical harmonics spectrum of the sound source. However, the sound radiation pattern may be affected by the location of the source inside the microphone array, which is an undesirable property when aiming to characterize source radiation in a unique manner. This paper presents a theoretical analysis of the spherical harmonics spectrum of spatially translated sources and defines four measures for the misalignment of the acoustic center of a radiating source. Optimization is used to promote optimal alignment based on the proposed measures and the errors caused by numerical and array-order limitations are investigated. This methodology is examined using both simulated and experimental data in order to investigate the performance and limitations of the different alignment methods.  相似文献   

16.
宋玉来  卢奂采  金江明 《物理学报》2014,63(19):194305-194305
为了重构非自由声场中目标声源的声场响应,提出单层传声器阵列信号空间重采样的声波分离方法.以球面波函数为基函数,建立由系列球面波函数叠加表达的声场数学模型.基于近场声全息原理,利用单层传声器阵列面上空间重采样形成的两组声压测量信号,求解基函数系数,并重构出传声器阵列两侧声源各自的声场响应,实现声波分离.使用脉动球和振动球共同作用的非自由声场,检验了数学模型以及传声器信号信噪比、传声器阵列形状和面积、声源中心位置、频率等关键参数对声波分离精度的影响,并在全消声室内进行了实验验证.最后,对单层传声器阵列重采样的声波分离方法的实施给出了建议.  相似文献   

17.
杨峰  李平  文玉梅  王德才  杨进  文静  邱景 《声学学报》2014,39(2):226-234
针对环境中广泛存在的声能,提出了一种采用Helmholtz共鸣器和悬臂梁压电换能器的声能采集器。Helmholtz共鸣器对入射声压进行放大,放大后的声压引起共鸣器弹性薄壁振动,薄壁的振动传递到压电换能器产生电能输出。建立了带弹性壁的立方形共鸣器的等效集中参数理论模型,并与压电换能器的机电特性结合,分析了声能采集器的声-机-电转换原理,研究了声压、声波频率和负载阻抗对输出功率的影响,研究结果为此类声能采集器的优化设计及工程应用提供了一种可行的方法。实验中,声源通过声波导管输出声能,当共鸣器管口处的声压级为94 dB时,系统实测最大输出功率达240μW。该采集器不仅可作为声能自供能采集器,还可在较远距离为低能耗电子装置进行有源声供能。   相似文献   

18.
Three methods are discussed: an automated pulse tube system; a direct, point measurement technique; and the application of a parametric array for oblique angle measurement.The first of these extends the capability of a proven impedance measurement technique using a waterborne acoustic waveguide (pulse tube). Data obtained in a frequency range 3 to 100 kHz, determined from complex reflection coefficients, are presented, via a transfer function analyser interfacing with a computer and plotter, to produce impedance diagrams.A direct, point impedance technique based on sensing particle velocity, or displacement of a surface and associated acoustic pressure is next discussed. Use is made of laser interferometry to measure the vector quantity, while scalar values are determined from a pressure sensor. This data affords a direct measurement of point impedance and can be applied in obtaining complex response information from heterogeneous materials or structures.The last method employs a non-linear acoustic device to obtain a requisite acoustic beam-width allowing characterization of materials at oblique angles, with samples of limited size, at low ultrasonic frequencies.  相似文献   

19.
针对传声器阵列两侧存在相干声源的非自由声场重建问题,提出基于球面谐波函数扩展近场声全息理论的相干声场重建方法。该方法在已知测量面两侧声源几何位置时,使用单层传声器阵列获取测量面处的声压分布,通过最小二乘法获得与目标声源和干扰噪声源响应对应的最优球波函数扩展项数和最优系数向量,结合测点位置的空间坐标进行声波分解,并分别重建出各声源在测量面上的声压分布。为了验证方法的有效性,分别给出了相干噪声源为球形声源和非球形声源的仿真验证,并在全消声室内对双扬声器产生的相干声场的重建进行了实验验证。结果表明:该方法对球形声源和非球形声源干扰下的声场重建都具有较好的效果,球形声源干扰下的重建精度更高。   相似文献   

20.
We perform a theoretical analysis on nonlinear thickness-stretch free vibration of thin-film acoustic wave resonators made from AlN and ZnO. The third-order or cubic nonlinear theory by Tiersten is employed. Using Green’s identify, under the usual approximation of neglecting higher time harmonics, a perturbation analysis is performed from which the resonator frequency-amplitude relation is obtained. Numerical calculations are made. The relation can be used to determine the linear operating range of these resonators. It can also be used to compare with future experimental results to determine the relevant thirdand/or fourth-order nonlinear elastic constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号