首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Let G = (VE) be a connected graph. The distance between two vertices u, v ∈ V, denoted by d(uv), is the length of a shortest u − v path in G. The distance between a vertex v ∈ V and a subset P ⊂ V is defined as , and it is denoted by d(vP). An ordered partition {P1P2, … , Pt} of vertices of a graph G, is a resolving partition of G, if all the distance vectors (d(vP1), d(vP2), … , d(vPt)) are different. The partition dimension of G, denoted by pd(G), is the minimum number of sets in any resolving partition of G. In this article we study the partition dimension of Cartesian product graphs. More precisely, we show that for all pairs of connected graphs G, H, pd(G × H) ? pd(G) + pd(H) and pd(G × H) ? pd(G) + dim(H), where dim(H) denotes the metric dimension of H. Consequently, we show that pd(G × H) ? dim(G) + dim(H) + 1.  相似文献   

2.
Let G=(V,E) be a simple undirected graph with a set V of vertices and a set E of edges. Each vertex vV has an integer valued demand d(v)?0. The source location problem with vertex-connectivity requirements in a given graph G asks to find a set S of vertices with the minimum cardinality such that there are at least d(v) vertex-disjoint paths between S and each vertex vV-S. In this paper, we show that the problem with d(v)?3, vV can be solved in linear time. Moreover, we show that in the case where d(v)?4 for some vertex vV, the problem is NP-hard.  相似文献   

3.
A Hilbert space operator AB(H) is p-hyponormal, A∈(p-H), if |A|2p?|A|2p; an invertible operator AB(H) is log-hyponormal, A∈(?-H), if log(TT)?log(TT). Let dAB=δAB or ?AB, where δABB(B(H)) is the generalised derivation δAB(X)=AX-XB and ?ABB(B(H)) is the elementary operator ?AB(X)=AXB-X. It is proved that if A,B∈(?-H)∪(p-H), then, for all complex λ, , the ascent of (dAB-λ)?1, and dAB satisfies the range-kernel orthogonality inequality ‖X‖?‖X-(dAB-λ)Y‖ for all X∈(dAB-λ)-1(0) and YB(H). Furthermore, isolated points of σ(dAB) are simple poles of the resolvent of dAB. A version of the elementary operator E(X)=A1XA2-B1XB2 and perturbations of dAB by quasi-nilpotent operators are considered, and Weyl’s theorem is proved for dAB.  相似文献   

4.
In this paper, we study the existence of multiple positive solutions to some Hamiltonian elliptic systems −Δv=λu+up+εf(x), −Δu=μv+vq+δg(x) in Ω;u,v>0 in Ω; u=v=0 on ∂Ω, where Ω is a bounded domain in RN (N?3); 0?f, g∈L∞(Ω); 1/(p+1)+1/(q+1)=(N−2)/N, p,q>1; λ,μ>0. Using sub- and supersolution method and based on an adaptation of the dual variational approach, we prove the existence of at least two nontrivial positive solutions for all λ,μ∈(0,λ1) and ε,δ∈(0,δ0), where λ1 is the first eigenvalue of the Laplace operator −Δ with zero Dirichlet boundary conditions and δ0 is a positive number.  相似文献   

5.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

6.
LetH=?Δ+V(r) be a Schrödinger operator with a spherically symmetric exploding potential, namely,V(r)=V S(r)+V L(r), whereV S(r) is short-range and the exploding partV L(r) satisfies the following assumptions: (a) Λ=lim sup r→∞ V L(r)<∞ (but Λ=?∞ is possible). Denote Λ+= max(Λ,0). (b)V L(r)∈C 2k (r 0, ∞) and, with someδ>0 such that 2>1: (d/dr) j V L(r) · (Λ+?V L(r))?1=O(r jδ) asr → ∞,j=1, ..., 2k. (c) ∫ r0 dr|V L(r|1/2 dr|V L(r)|1/2=∞. (d) (d/dr)V L(r)≦0. Under these assumptions a limiting absorption principle forR(z)=(H?z)?1 is established. More specifically, ifK ?C +={zImz≧0} is compact andK ∩ (?∞, Λ]=Ø thenR (z) can be extended as a continuous map ofK intoB (Y, Y*) (with the uniform operator topology), whereY ?L 2(R n) is a weighted-L 2 space. To ensure uniqueness of solutions of (H?z)u=f, zK, a suitable radiation condition is introduced.  相似文献   

7.
Additive maps derivable or Jordan derivable at zero point on nest algebras   总被引:1,自引:0,他引:1  
Let AlgN be a nest algebra associated with the nest N on a (real or complex) Banach space X. Assume that every NN is complemented whenever N-=N. Let δ:AlgN→AlgN be an additive map. It is shown that the following three conditions are equivalent: (1) δ is derivable at zero point, i.e., δ(AB)=δ(A)B+Aδ(B) whenever AB=0; (2) δ is Jordan derivable at zero point, i.e., δ(AB+BA)=δ(A)B+Aδ(B)+Bδ(A)+δ(B)A whenever AB+BA=0; (3) δ has the form δ(A)=τ(A)+cA for some additive derivation τ and some scalar c. It is also shown that δ is generalized derivable at zero point, i.e., δ(AB)=δ(A)B+Aδ(B)-Aδ(I)B whenever AB=0, if and only if δ is an additive generalized derivation. Finer characterizations of above maps are given for the case dimX=.  相似文献   

8.
Let G be a simple connected graph with the vertex set V(G). The eccentric distance sum of G is defined as ξd(G)=vV(G)ε(v)DG(v), where ε(v) is the eccentricity of the vertex v and DG(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. In this paper we characterize the extremal unicyclic graphs among n-vertex unicyclic graphs with given girth having the minimal and second minimal eccentric distance sum. In addition, we characterize the extremal trees with given diameter and minimal eccentric distance sum.  相似文献   

9.
A binary structure is an arc-coloured complete digraph, without loops, and with exactly two coloured arcs (u,v) and (v,u) between distinct vertices u and v. Graphs, digraphs and partial orders are all examples of binary structures. Let B be a binary structure. With each subset W of the vertex set V(B) of B we associate the binary substructure B[W] of B induced by W. A subset C of V(B) is a clan of B if for any c,dC and vV(B)?C, the arcs (c,v) and (d,v) share the same colour and similarly for (v,c) and (v,d). For instance, the vertex set V(B), the empty set and any singleton subset of V(B) are clans of B. They are called the trivial clans of B. A binary structure is primitive if all its clans are trivial.With a primitive and infinite binary structure B we associate a criticality digraph (in the sense of [11]) defined on V(B) as follows. Given vwV(B), (v,w) is an arc of the criticality digraph of B if v belongs to a non-trivial clan of B[V(B)?{w}]. A primitive and infinite binary structure B is finitely critical if B[V(B)?F] is not primitive for each finite and non-empty subset F of V(B). A finitely critical binary structure B is hypercritical if for every vV(B), B[V(B)?{v}] admits a non-trivial clan C such that |V(B)?C|≥3 which contains every non-trivial clan of B[V(B)?{v}]. A hypercritical binary structure is ultracritical whenever its criticality digraph is connected.The ultracritical binary structures are studied from their criticality digraphs. Then a characterization of the non-ultracritical but hypercritical binary structures is obtained, using the generalized quotient construction originally introduced in [1].  相似文献   

10.
The concept of degree distance of a connected graph G is a variation of the well-known Wiener index, in which the degrees of vertices are also involved. It is defined by D(G)=∑xV(G)d(x)∑yV(G)d(x,y), where d(x) and d(x,y) are the degree of x and the distance between x and y, respectively. In this paper it is proved that connected graphs of order n≥4 having the smallest degree distances are K1,n−1,BS(n−3,1) and K1,n−1+e (in this order), where BS(n−3,1) denotes the bistar consisting of vertex disjoint stars K1,n−3 and K1,1 with central vertices joined by an edge.  相似文献   

11.
《Indagationes Mathematicae》2005,16(3-4):461-486
Following ideas of van Dijk and Hille we study the link which exists between maximal degenerate representations and Berezin kernels.We consider the conformal group Conf(V) of a simple real Jordan algebra V. The maximal degenerate representations πs (s ε ℂ) we shall study are induced by a character of a maximal parabolic subgroup of Conf(V). These representations πs can be realized on a space Is of smooth functions on V. There is an invariant bilinear form ℬs on the space Is. The problem we consider is to diagonalize this bilinear form ℬs, with respect to the action of a symmetric subgroup G of the conformal group Conf(V). This bilinear form can be written as an integral involving the Berezin kernel Bv an invariant kernel on the Riemannian symmetric space G/K, which is a Makarevich symmetric space in the sense of Bertram. Then we can use results by van Dijk and Pevzner who computed the spherical Fourier transform of Bv. From these, one deduces that the Berezin kernel satisfies a remarkable Bernstein identity: D(ν)Bν=b(ν)Bν+1, where D(ν) is an invariant differential operator on G/K and b(ν) is a polynomial. By using this identity we compute a Hua type integral which gives the normalizing factor for an intertwining operator from I−s to Is. Furthermore, we obtain the diagonalization of the invariant bilinear form with respect to the action of the maximal compact group U of the conformal group Conf(V).  相似文献   

12.
Let G be a graph and SV(G). For each vertex uS and for each vV(G)−S, we define to be the length of a shortest path in 〈V(G)−(S−{u})〉 if such a path exists, and otherwise. Let vV(G). We define if v⁄∈S, and wS(v)=2 if vS. If, for each vV(G), we have wS(v)≥1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G)≥(d+2)/4, and, (ii) that if G is a connected graph of order n, then .  相似文献   

13.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). For a fixed digraph H, the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H).An optimization version of the homomorphism problem was motivated by a real-world problem in defence logistics and was introduced in Gutin, Rafiey, Yeo and Tso (2006) [13]. If each vertex uV(D) is associated with costs ci(u),iV(H), then the cost of the homomorphism f is ∑uV(D)cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem forH and denote it as MinHOM(H). The problem is to decide, for an input graph D with costs ci(u),uV(D),iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost.Although a complete dichotomy classification of the complexity of MinHOM(H) for a digraph H remains an unsolved problem, complete dichotomy classifications for MinHOM(H) were proved when H is a semicomplete digraph Gutin, Rafiey and Yeo (2006) [10], and a semicomplete multipartite digraph Gutin, Rafiey and Yeo (2008) [12] and [11]. In these studies, it is assumed that the digraph H is loopless. In this paper, we present a full dichotomy classification for semicomplete digraphs with possible loops, which solves a problem in Gutin and Kim (2008) [9].  相似文献   

14.
Let G=G(V,E) be a simple graph, L a list assignment with |L(v)|=Δ(G)vV and WV an independent subset of the vertex set. Define to be the minimum distance between two vertices of W. In this paper it is shown that if G is 2-connected with Δ(G)=3 and G is not K4 then every precoloring of W is extendable to a proper list coloring of G provided that d(W)≥6. An example shows that the bound is sharp. This result completes the investigation of precoloring extensions for graphs with |L(v)|=Δ(G) for all vV where the precolored set W is an independent set.  相似文献   

15.
Pavol Hell 《Discrete Mathematics》2009,309(18):5703-5373
A sequence 〈d1,d2,…,dn〉 of non-negative integers is graphical if it is the degree sequence of some graph, that is, there exists a graph G on n vertices whose ith vertex has degree di, for 1≤in. The notion of a graphical sequence has a natural reformulation and generalization in terms of factors of complete graphs.If H=(V,E) is a graph and g and f are integer-valued functions on the vertex set V, then a (g,f)-factor of H is a subgraph G=(V,F) of H whose degree at each vertex vV lies in the interval [g(v),f(v)]. Thus, a (0,1)-factor is just a matching of H and a (1, 1)-factor is a perfect matching of H. If H is complete then a (g,f)-factor realizes a degree sequence that is consistent with the sequence of intervals 〈[g(v1),f(v1)],[g(v2),f(v2)],…,[g(vn),f(vn)]〉.Graphical sequences have been extensively studied and admit several elegant characterizations. We are interested in extending these characterizations to non-graphical sequences by introducing a natural measure of “near-graphical”. We do this in the context of minimally deficient (g,f)-factors of complete graphs. Our main result is a simple linear-time greedy algorithm for constructing minimally deficient (g,f)-factors in complete graphs that generalizes the method of Hakimi and Havel (for constructing (f,f)-factors in complete graphs, when possible). It has the added advantage of producing a certificate of minimum deficiency (through a generalization of the Erdös-Gallai characterization of (f,f)-factors in complete graphs) at no additional cost.  相似文献   

16.
We prove the existence of solutions of the Cauchy problem for the doubly nonlinear evolution equation: dv(t)/dt+Vφt(u(t))∋f(t), v(t)∈Hψ(u(t)), 0<t<T, where Hψ (respectively, Vφt) denotes the subdifferential operator of a proper lower semicontinuous functional ψ (respectively, φt explicitly depending on t) from a Hilbert space H (respectively, reflexive Banach space V) into (−∞,+∞] and f is given. To do so, we suppose that V?HH?V compactly and densely, and we also assume smoothness in t, boundedness and coercivity of φt in an appropriate sense, but use neither strong monotonicity nor boundedness of Hψ. The method of our proof relies on approximation problems in H and a couple of energy inequalities. We also treat the initial-boundary value problem of a non-autonomous degenerate elliptic-parabolic problem.  相似文献   

17.
Let Φ:AB be an additive surjective map between some operator algebras such that AB+BA=0 implies Φ(A)Φ(B)+Φ(B)Φ(A)=0. We show that, under some mild conditions, Φ is a Jordan homomorphism multiplied by a central element. Such operator algebras include von Neumann algebras, C-algebras and standard operator algebras, etc. Particularly, if H and K are infinite-dimensional (real or complex) Hilbert spaces and A=B(H) and B=B(K), then there exists a nonzero scalar c and an invertible linear or conjugate-linear operator U:HK such that either Φ(A)=cUAU−1 for all AB(H), or Φ(A)=cUAU−1 for all AB(H).  相似文献   

18.
Let A be a standard operator algebra acting on a (real or complex) normed space E. For two n-tuples A = (A1, … , An) and B = (B1, … , Bn) of elements in A, we define the elementary operator RA,B on A by the relation for all X in A. For a single operator AA, we define the two particular elementary operators LA and RA on A by LA(X) = AX and RA(X) = XA, for every X in A. We denote by d(RA,B) the supremum of the norm of RA,B(X) over all unit rank one operators on E. In this note, we shall characterize: (i) the supremun d(RA,B), (ii) the relation , (iii) the relation d(LA − RB) = ∥A∥ + ∥B∥, (iv) the relation d(LARB − LBRA) = 2∥A∥ + ∥B∥. Moreover, we shall show the lower estimate d(LA − RB) ? max{supλV(B)A − λI∥, supλV(A)B − λI∥} (where V(X) is the algebraic numerical range of X in A).  相似文献   

19.
We consider a class of second order elliptic operators on a d-dimensional cube Sd. We prove that if the coefficients are of class Ck+δ(Sd), with k=0,1 and δ∈(0,1), then the corresponding elliptic problem admits a unique solution u belonging to Ck+2+δ(Sd) and satisfying non-standard boundary conditions involving only second order derivatives.  相似文献   

20.
Given an undirected multigraph G=(V,E), a family W of sets WV of vertices (areas), and a requirement function r:WZ+ (where Z+ is the set of nonnegative integers), we consider the problem of augmenting G by the smallest number of new edges so that the resulting graph has at least r(W) edge-disjoint paths between v and W for every pair of a vertex vV and an area WW. So far this problem was shown to be NP-hard in the uniform case of r(W)=1 for each WW, and polynomially solvable in the uniform case of r(W)=r?2 for each WW. In this paper, we show that the problem can be solved in time, even if r(W)?2 holds for each WW, where n=|V|, m=|{{u,v}|(u,v)∈E}|, p=|W|, and r*=max{r(W)∣WW}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号