首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

2.
Natarajan S 《Inorganic chemistry》2002,41(21):5530-5537
Hydro/solvothermal reactions of ZnO, HCl, H(3)PO(4), 1,4-diazacycleheptane (homopiperazine), and H(2)O under a variety of conditions yielded three new organic-inorganic hybrid materials, [C(5)N(2)H(14)][Zn(HPO(4))(2)].xH(2)O (x = approximately 0.46), I, [C(5)N(2)H(14)][Zn(3)(H(2)O)(PO(4))(2)(HPO(4))], II, and [C(5)N(2)H(14)][Zn(2)(HPO(4))(3)].H(2)O, III. While I has a one-dimensional structure, II possesses a two-dimensional layered structure, and III has a three-dimensional structure closely related to the ABW zeolitic architecture. All the compounds consist of vertex linking of ZnO(4), PO(4), and HPO(4) tetrahedral units. The fundamental building unit, single four-membered ring (S4R), is present in all the cases, and the observed differences in their structures result from variations in the connectivity between the S4R units. Thus I has a corner-shared S4R forming an infinite one-dimensional chain, II has two corner-shared chains fused through a 3-coordinated oxygen atom forming a strip and a layer with eight-membered apertures, and III has S4R units connected via oxygen atoms to give rise to channels bound by eight T atoms (T = Zn, P) in all crystallographic directions. Crystal data: I, monoclinic, space group = P2(1)/n (No. 14), a = 8.6053(3) A, b = 13.7129(5) A, c = 10.8184(4) A, beta = 97.946(1) degrees, V = 1264.35(8) A(3), Z = 4; II, monoclinic, space group = P2(1)/c (No. 14), a = 11.1029(1) A, b = 17.5531(4) A, c = 8.2651(2) A, beta = 97.922(2) degrees, V = 1595.42(5) A(3), Z = 4; III, monoclinic, space group = P2(1) (No. 4), a = 8.0310(2) A, b = 10.2475(3) A, c = 10.570(3) A, beta = 109.651(1) degrees, V = 819.24(3) A(3), Z = 2.  相似文献   

3.
The hydrothermal chemistry of the CsVO(3)/methylenediphosphonate system was investigated. Variations in reaction temperatures, heating times, and stoichiometries of reactants resulted in the isolation of mononuclear, one-, two-, and three-dimensional species: Cs[VO(HO(3)PCH(2)PO(3)H)(2)(H(2)O)] (1), Cs[VO(HO(3)PCH(2)PO(3))] (2), Cs[(VO)(2)V (O(3)PCH(2)PO(3))(2)(H(2)O)(2)] (3), and [V(HO(3)PCH(2)PO(3))(H(2)O)] (4), respectively. The structure of the anion of 1 consists of isolated V(IV) octahedra. Phase 2 adopts a chain structure constructed from corner-sharing V(IV) octahedra, forming infinite {-V=OV=O-} linkages. The layer structure of 3 contains trinuclear units of corner-sharing {VO(6)} octahedra with the central V site in the III oxidation state and V(IV) centers at the extremities of the cluster. The diphosphonate ligands serve to link neighboring trinuclear motifs into a layer structure three octahedra in depth. The Cs(+) cations occupy cavities within the layers, rather than the more common interlamellar positions. The structure of 4 consists of isolated {V(III)O(6)} octahedra linked by diphosphonate groups into a three-dimensional framework. Crystal data: for 1, CH(6)O(7)P(2)V(0.5)Cs, monoclinic C2, a = 10.991(2) ?, b = 10.161(2) ?, c = 7.445(1) ?, beta = 92.97(3) degrees, Z = 4; for 2, CH(3)O(7)P(2)VCs, monoclinic C2, a = 10.212(2) ?, b = 10.556(2) ?, c = 14.699(3) ?, beta = 94.57(2) degrees, Z = 8; for 3, C(2)H(8)O(16)P(4)V(3)Cs, monoclinic C2/m, a = 9.724(2) ?, b = 8.136(2) ?, c = 10.268(2) ?, beta = 103.75(3) degrees, Z = 2; for 4, CH(5)O(7)P(2)V, monoclinic P2(1)()/n, a = 5.341(1) ?, b = 11.516(2) ?, c = 10.558(2) ?, beta = 99.89(1) degrees, Z = 4.  相似文献   

4.
(H(3)O)(2)[V(4)(HPO(4))(PO(4))(3)O(6)F](2)[NC(7)H(14)](6) (labeled ULM-17) has been hydrothermally synthesized (150 degrees, 24 h, autogeneous pressure). It is monoclinic (space group P2(1)/c (No. 14)) with a = 21.4747(6) ?, b = 17.7223(5) ?, c = 20.1616(6) ?, beta = 94.329(1) degrees, and Z = 4. The structure consists in the hexagonal close packing of discrete hydronium cations, protonated quinuclidine and molecular anions [V(4)(HPO(4))(PO(4))(3)O(6)F](4)(-) (1) The structure presents two kinds of octameric anions built up from the tetrahedral arrangement of V(V)O(5)F octahedra sharing edges and vertices, capped by phosphorus tetrahedra. The stability of the solid is ensured via strong hydrogen bonds between the oxygens of the polyanions and the hydrogens of both hydronium and quinuclidinium cations. The particuliar location of fluorine at the center of the molecular anion 4-fold coordinated by V(V) was studied by solid state NMR.  相似文献   

5.
Three new aluminum diphosphonates (C(3)H(7)NH(3))[AlF[(HO)O(2)PC(2)H(4)PO(3)]] (1) (orthorhombic, Pnma, a = 8.2048(1) A, b = 6.90056(6) A, c = 19.6598(4) A, Z = 4), (H(3)NC(2)H(4)NH(3))[Al(OH)(O(3)PC(2)H(4)PO(3))] (2) (monoclinic, P2(1)/n, a = 11.142(3) A, b = 7.008(2) A, c = 12.903(5) A, beta = 96.24(7) degrees, Z = 4), and (NH(4))(2)[AlF(O(3)PCH(2)PO(3))] (3) (orthorhombic, Cmcm, a = 16.592(2) A, b = 7.5106(9) A, c = 7.0021(9) A, Z = 4) have been synthesized by solvothermal methods in the presence of linear organic ammonium cations (for 1 and 2) and ammonium cations (for 3) and their structures determined using powder, microcrystal, and single-crystal X-ray diffraction data, respectively. All three materials contain a similar one-dimensional chain motif which is related to that found in the mineral Tancoite. This chain motif consists of corner-sharing octahedra (AlO(4)F(2) for 1 and 3 and AlO(6) for 2) linked together through the bridging CPO(3) tetrahedra of the diphosphonate groups. These chains are unusual in that each diphosphonate moiety acts as a bisbidentate ligand that is coordinated to the same two metal centers through both of the O(3)PC- groups of the diphosphonate ligand. The arrangement of the Tancoite-like chains and charge compensation cations in the structures of compounds 1-3 is seen to be dependent upon the nature of the diphosphonic acid and organoammonium/ammonium cations. Careful selection of these two components may provide a method to design future materials in this system.  相似文献   

6.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

7.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

8.
Brownish platelet crystals of My(VO)9 + x(PO4)4x(HPO4)12 - 4x (M = Cs+, NH4+ and Rb+) were prepared hydrothermally. The structure of Cs approximately 5(VO)10(PO4)4(HPO4)8 was solved from single-crystal X-ray diffraction data in the centrosymmetric monoclinic space group C2/c (No. 15) a = 21.1951(8) A, b = 12.2051(4) A, c = 20.6230(8) A, beta = 109.742(2) degrees, Z = 4 (R1(Fo) = 0.054, wR2(Fo2) = 0.123). The structure of Cs approximately 5(VO)10(PO4)4(HPO4)8 is described and compared to that of K2(VO)3(HPO4)4 previously reported by Lii. For the three compounds, thermogravimetric data and susceptibility measurements were investigated and were found to be in agreement with the structural study.  相似文献   

9.
A novel gallium phosphate, Ga(2,2'-bipy)(HPO(4))(H(2)PO(4)) (denoted FJ-12; FJ = Fujian Institute of Research on the Structure of Matter), which is the first example of layered inorganic-organic hybrid gallium phosphate with neutral framework, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. This compound crystallizes in the monoclinic system, space group P2(1)/c (No. 14), with a = 10.9443(9), b = 15.8253(13), and c = 8.4201(7) A, beta = 108.898(2) degrees, V = 1379.7(2) A(3), and Z = 4. The structure consists of HPO(4) and H(2)PO(4) tetrahedra and unusual GaO(4)N(2) octahedra which are linked through their vertexes forming an undulated sheetlike structure with 4.12-net. The adjacent layers are stably packed together and exhibit interesting 3-D supramolecular arrays pi-pi interactions of the 2,2'-bipy groups.  相似文献   

10.
Single crystals of three new layered uranium phosphate fluorides, A(UO2)F(HPO4).xH2O (A = Cs+, Rb+, and K+; x = 0-1) have been synthesized by hydrothermal reactions using UO3, H3PO4, HF, and corresponding alkali metal halides as reagents. Although all three new materials have layered structures, each of them contains different structural motifs within the layer. While Cs(UO2)F(HPO4).0.5H2O and Rb(UO2)F(HPO4) reveal noncentrosymmetric crystal structures, K(UO2)F(HPO4).H2O crystallizes in a centrosymmetric space group. In addition, the ion-exchanged phases for all three materials are highly crystalline. Crystal data: Cs(UO2)F(HPO4).0.5H2O, orthorhombic, space group Pca21 (No. 29), with a = 25.656(5) A, b = 6.0394(12) A, c = 9.2072(18) A, and Z = 4; Rb(UO2)F(HPO4), orthorhombic, space group Cmc21 (No. 36), with a = 17.719(4) A, b = 6.8771(14) A, c = 12.139(2) A, and Z = 8; K(UO2)F(HPO4).H2O, monoclinic, P21/n (No. 14), with a = 6.7885(14) A, b = 8.7024(17) A, c = 12.020(2) A, beta = 94.09(3), and Z = 4.  相似文献   

11.
1 INTRODUCTION Uranium-based open-framework materials are the subject of significant investigation because of their relevance to radioactive waste management, ura- nium geochemistry and possible applications in ion exchange, catalysis, etc[1]. The crystal chemistry of hexavalent uranium is rich in structure style due to the high coordination numbers (six, seven, or eight) accessible to U6 and the polarized distribution of bond strengths within uranyl polyhedra. The area of metal phospho…  相似文献   

12.
Jiang YC  Wang SL  Lee SF  Lii KH 《Inorganic chemistry》2003,42(20):6154-6156
Two new layered transition metal oxalatophosphates, (H(3)TREN)[M(2)(HPO(4))(C(2)O(4))(2.5)].3H(2)O (M = Mn(II) and Fe(II)), have been synthesized by hydrothermal methods in the presence of a structure-directing organic amine, tris(2-aminoethyl)amine, and characterized by single-crystal X-ray diffraction and magnetic susceptibility. They are the first metal oxalatophosphates which adopt a two-dimensional honeycomb structure with the organic cations and water molecules intercalated in between. Within a layer, there are 12-membered pores made from 6 Mn, 1 phosphate, and 5 oxalate units. Measurements of field dependence of magnetization and variable-temperature susceptibilities under different fields were performed on a polycrystalline sample of the manganese compound. The results indicate a phase transition from a paramagnetic to an antiferromagnetic coupled state at about 12 K. Crystal data for the manganese compound follow: triclinic, space group Ponemacr; (No. 2), a = 8.8385(6) A, b = 9.0586(6) A, c = 16.020(1) A, alpha = 77.616(1) degrees, beta = 83.359(1) degrees, gamma = 68.251(1) degrees, and Z = 2. Crystal data for the iron compound are the same as those for the manganese compound except a = 8.7776(9) A, b = 8.9257(9) A, c = 15.884(2) A, alpha = 78.630(2) degrees, beta = 84.018(2) degrees, and gamma = 67.372(2) degrees.  相似文献   

13.
A new mixed alkali/alkaline earth iron phosphate, NaBaFe4(HPO4)3.H2O, has been synthesized hydrothermally and structurally characterized by single-crystal X-ray diffraction, magnetic susceptibility, infrared spectroscopy, and thermogravimetric analysis. The title compound crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 9.287(2) A, b = 22.665(4) A, c = 8.966(3) A, beta = 91.82(2), and Z = 4. The compound has a 2-D framework structure constructed from layers, stacked along the [010] unit cell direction with Na+ and Ba2+ ions, and water molecules residing within the interlayer space. The anionic layers are composed from the assemblage of vertex shared FeO6 octahedra interconnected by PO4(3)- and HPO4(2)- tetrahedra. The layers are built from four unique FeO6 units linking through vertex shared oxygen atoms to form infinite zigzag chains that run parallel to the a axis. These chains form single layers that run infinitely in the c direction through the vertex sharing of PO4 groups.  相似文献   

14.
Two new layered gallophosphate-oxalate materials have been prepared hydrothermally using ethylenediamine and oxalic acid as structure-directing agents. The compounds (C2N2H10)2[Ga2(C2O4)2(HPO4)3].H2O 1 and (C2N2H10)3- [Ga4(C2O4)4(HPO4)4(H2PO4)2] 2 are closely related, consisting of anionic double chains built of alternating paris of GaO6 and HPO4 polyhedra. These double chains are linked via bridging HPO4 or H2PO4 tetrahedra to form corrugated layers containing eight-membered rings. The oxalate group acts as a bidentate ligand to each of the GaO6 octahedron. The corrugated layers are held together by strong to weak hydrogen-bonding interactions between oxalate groups, water and diprotonated ethylenediamine molecules, and the framework components. The compounds were characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and infrared and Raman spectroscopy. Crystal data for 1: monoclinic, space group P21/C (No. 14), a = 6.355(1) A, b = 39.362(8) A, c = 9.249(2) A, beta = 106.7(1) degrees, Z = 2. Crystal data for 2: triclinic, space group P1 (No. 2), a = 8.730(1) A, b = 11.575(1) A, c = 11.696(1) A, alpha = 115.12(1) degree, beta = 90.07(1) degree, gamma = 111.23(1) degree, Z = 2.  相似文献   

15.
The 1/2V2O5-H2C2O4/H3PO4/NH4OH system was investigated using hydrothermal techniques. Four new phases, (NH4)VOPO(4).1.5H2O (1), (NH4)0.5VOPO(4).1.5H2O (2), (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O (3), and (NH4)2[VO(HPO4)]2(C2O4).H2O (4), have been prepared and structurally characterized. Compounds 1 and 2 have layered structures closely related to VOPO(4).2H2O and A0.5VOPO4.yH2O (A = mono- or divalent metals), whereas 3 has a 3D open-framework structure. Compound 4 has a layered structure and contains both oxalate and phosphate anions coordinated to vanadium cations. Crystal data: (NH4)VOPO(4).1.5H2O, tetragonal (I), space group I4/mmm (No. 139), a = 6.3160(5) A, c = 13.540(2) A, Z = 4; (NH4)0.5VOPO(4).1.5H2O, monoclinic, space group P2(1)/m (No. 11), a = 6.9669(6) A, b = 17.663(2) A, c = 8.9304(8) A, beta = 105.347(1) degrees, Z = 8; (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O, triclinic, space group P1 (No. 2), a = 10.2523(9) A, b = 12.263(1) A, c = 12.362(1) A, alpha = 69.041(2) degrees, beta = 65.653(2) degrees, gamma = 87.789(2) degrees, Z = 2; (NH4)2[VO(HPO4)]2(C2O4).5H2O, monoclinic (C), space group C2/m (No. 12), a = 17.735(2) A, b = 6.4180(6) A, c = 22.839(2) A, beta = 102.017(2) degrees, Z = 6.  相似文献   

16.
The molecular and crystal structures of solvent-free potassium, rubidium, and cesium oxalates have been determined ab initio from high-resolution synchrotron and X-ray laboratory powder patterns. In the case of potassium oxalate K(2)C(2)O(4) (a = 10.91176(7) A, b = 6.11592(4) A, c = 3.44003(2) A, orthorhombic, Pbam, Z = 2), the oxalate anion is planar, whereas in cesium oxalate Cs(2)C(2)O(4) (a = 6.62146(5) A, b = 11.00379(9) A, c = 8.61253(7) A, beta = 97.1388(4) degrees, monoclinic, P2(1)/c, Z = 4) it exhibits a staggered conformation. For rubidium oxalate at room temperature, two polymorphs exist, one (beta-Rb(2)C(2)O(4)) isotypic to potassium oxalate (a = 11.28797(7) A, b = 6.29475(4) A, c = 3.62210(2) A, orthorhombic, Pbam, Z = 2) and the other (alpha-Rb(2)C(2)O(4)) isotypic to cesium oxalate (a = 6.3276(1) A, b = 10.4548(2) A, c = 8.2174(2) A, beta = 98.016(1) degrees, monoclinic, P2(1)/c, Z = 4). The potassium oxalate structure can be deduced from the AlB(2) type, and the cesium oxalate structure from the Hg(99)As type, respectively. The relation between the two types of crystal structures and the reason for the different conformations of the oxalate anion are discussed.  相似文献   

17.
The hydrothermal reactions of MoO(3), an appropriate Cu(II) source, tetra-2-pyridylpyrazine (tpypyz), and phosphoric acid and/or an organophosphonate yielded a series of organic-inorganic hybrid materials of the copper-molybdophosphonate family. A common feature of the structures is the entrainment within the extended architectures of chemically robust [Mo(5)O(15)(O(3)PR)(2)](4)(-) clusters as molecular building blocks. The cluster is a characteristic feature of the one-dimensional materials [[Cu(2)(tpypyz)(H(2)O)(3)]Mo(5)O(15)(HPO(4))(O(3)PCH(2)CO(2)H)].H(2)O (1.H(2)O) and [[Cu(2)(tpypyz)(H(2)O)]Mo(5)O(15)(O(3)PC(6)H(5))(2)].2H(2)O (2.2H(2)O), the two-dimensional network [[Cu(2)(tpypyz)(H(2)O)(3)]Mo(5)O(15)(HPO(4))(2)].2H(2)O (5.2H(2)O) and the three-dimensional frameworks [[Cu(2)(tpypyz)(H(2)O)(2)]Mo(5)O(15)[O(3)P(CH(2))(n)()PO(3)]].xH(2)O [n = 3, x = 2.25 (6.2.25H(2)O); n = 4, x = 0.33 (7.0.33H(2)O)]. In the case of methylenediphosphonate as the phosphorus component, the unique chelating nature of the ligand precludes formation of the pentamolybdate core, resulting in the chain structures [[Cu(2)(tpypyz)(H(2)O)]Mo(3)O(8) (HO(3)PCH(2)PO(3))(2)].8H(2)O (3.8H(2)O) and [[Cu(2)(tpypyz)(H(2)O)](2)(Mo(3)O(8))(2)(O(3)PCH(2)PO(3))(3)].16.9H(2)O (4.16.9H(2)O). For structures 1-7, the secondary metal-ligand building block is the binuclear [Cu(2)(tpypyz)(H(2)O)(x)](4+) cluster. There is considerable structural versatility as a result of the variability in the number of attachment sites at the phosphomolybdate clusters, the coordination geometry of the Cu(II), which may be four-, five-, or six-coordinate, the extent of aqua ligation, and the participation of phosphate oxygen atoms as well as molybdate oxo groups in bonding to the copper sites. Crystal data: 1.H(2)O, C(26)H(28)N(6)Cu(2)Mo(5)O(28)P(2), monoclinic C2/c, a = 42.497(2) A, b = 10.7421(4) A, c = 20.5617(8) A, beta = 117.178(1) degrees, V = 8350.1(5) A(3), Z = 8; 2.2H(2)O, C(36)H(32)N(6)Cu(2)Mo(5)O(24)P(2), monoclinic P2(1)/c, a = 11.2478(7) A, b = 19.513(1) A, c = 21.063(1) A, beta = 93.608(1) degrees, V = 4613.7(5) A(3), Z = 4; 3.8H(2)O, C(26)H(40)N(6)Cu(2)Mo(3)O(29)P(4), monoclinic C2/c, a = 32.580(2) A, b = 17.8676(9) A, c = 15.9612(8) A, beta = 104.430(1) degrees, V = 8993.3(8) A(3), Z = 8; 4.16.9H(2)O, C(51)H(71.75)Cu(4)Mo(6)N(12)O(51)P(6), monoclinic P2(1)/c, a = 27.929(3) A, b = 12.892(2) A, c = 22.763(3) A, beta = 90.367(2) degrees, V = 8195.7(2) A(3), Z = 4;( )()5.2H(2)O, C(24)H(28)N(6)Cu(2)Mo(5)O(28)P(2), monoclinic P2(1)/n, a = 11.3222(4) A, b = 18.7673(7) A, c = 19.4124(7) A, beta = 98.819(1) degrees, V = 4076.1(3) A(3), Z = 4; 6.2.25H(2)O, C(27)H(28.5)N(6)Cu(2)Mo(5)O(24.25)P(2), monoclinic C2/c, a = 12.8366(5) A, b = 18.4221(8) A, c = 34.326(1) A, beta = 100.546(1) degrees, V = 7980.1(6) A(3), Z = 8; 7.(1)/(3)H(2)O, C(28)H(28.7)N(6)Cu(2)Mo(5)O(23.3)P(2), monoclinic C2/c, a = 12.577(1) A, b = 18.336(1) A, c = 36.476(3) A, beta = 91.929(2) degrees, V = 8407.3 A(3), Z = 8.  相似文献   

18.
The reaction of the molecular transition metal iodate, Cs[CrO(3)(IO(3))], with UO(3) under mild hydrothermal conditions provides access to a new low-dimensional, mixed-metal U(VI) compound, Cs(2)[(UO(2))(CrO(4))(IO(3))(2)] (1). The structure of 1 is quite unusual and consists of one-dimensional (1)(infinity)[(UO(2))(CrO(4))(IO(3))(2)](2-) ribbons separated by Cs(+) cations. These ribbons are formed from [UO(7)] pentagonal bipyramids that contain a uranyl core, [CrO(4)] tetrahedra, and both monodentate and bridging iodate anions. Crystallographic data: 1, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4 (T = 193 K).  相似文献   

19.
迄今, 在中温水热条件下已合成了大量具有空旷骨架结构的过渡金属磷酸盐微孔材料[1], 这类材料在非线性光学材料、磁性材料、超导材料及催化等诸多方面具有潜在的应用前景[2~5].  相似文献   

20.
Wang CM  Liao CH  Chen PL  Lii KH 《Inorganic chemistry》2006,45(4):1436-1438
A new uranium(IV) fluorooxalate, UF3(H2O)(C2O4)0.5, has been synthesized by a hydrothermal method and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. The structure consists of two-dimensional layers of corner- and edge-sharing tricapped trigonal prisms with the composition UF(4/2)F(2/2)O3 linked by bisbidentate oxalate ligands to form a three-dimensional framework. Magnetic susceptibilities were measured to confirm the tetravalent state of uranium. Crystal data: monoclinic, space group C2/c, a = 17.246(3) Angstroms, b = 6.088(1) Angstroms, c = 8.589(2) Angstroms, beta = 95.43(3) degrees, and Z = 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号