首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Analytical wave propagation studies in gradient elastic solids and structures are presented. These solids and structures involve an infinite space, a simple axial bar, a Bernoulli–Euler flexural beam and a Kirchhoff flexural plate. In all cases wave dispersion is observed as a result of introducing microstructural effects into the classical elastic material behavior through a simple gradient elasticity theory involving both micro-elastic and micro-inertia characteristics. It is observed that the micro-elastic characteristics are not enough for resulting in realistic dispersion curves and that the micro-inertia characteristics are needed in addition for that purpose for all the cases of solids and structures considered here. It is further observed that there exist similarities between the shear and rotary inertia corrections in the governing equations of motion for bars, beams and plates and the additions of micro-elastic (gradient elastic) and micro-inertia terms in the classical elastic material behavior in order to have wave dispersion in the above structures.  相似文献   

2.
Wave propagation in elastic dielectrics with flexoelectricity, micro-inertia and strain gradient elasticity is investigated in this paper. Dispersion phenomenon, which does not exist in classical elastic dielectric theory, is observed in the flexoelectric microstructured solids. Analytical solutions for the phase velocity \(C_{p}\), group velocity \(C_{g}\) and their ratio \(\gamma = C_{g} / C_{p}\) are calculated for the case of harmonic decomposition. The magnitudes of the phase velocity and group velocity changed with the increasing of the wave number, while they are constant in the classical elastic dielectric theory. It is shown that the flexoelectricity, micro-inertia and microstructural effects are significant to predict the real behavior of longitudinal wave propagating in flexoelectric microstructured solids. Microstructural effects are not sufficient for dealing with realistic dispersion curves in flexoelectric solids, the micro-inertia and flexoelectricity are needed to obtain a physically acceptable value of the phase and group velocities.  相似文献   

3.
In the framework of the theory of mixtures, the governing equations of motion of a fluid-saturated poroelastic medium including microstructural (for both the solid and the fluid) and micro-inertia (for the solid) effects are derived. This is accomplished by appropriately combining the conservation of mass and linear momentum equations with the constitutive equations for both the solid and the fluid constituents. The solid is assumed to be gradient elastic, that is, its stress tensor depends on the strain and the second gradient of strain tensor. The fluid is assumed to have an analogous behavior, that is, its stress tensor depends on the pressure and the second gradient of pressure. A micro-inertia term in the form of the second gradient of the acceleration of the solid is also included in the equations of motion. The equations of motion in three dimensions are seven equations with seven unknowns, the six displacement components for the solid and the fluid and the pore-fluid pressure. Because of the microstructural effects, the order of these equations is two degrees higher than in the classical case. Application of the divergence and the rot operations on these equations enable one to study the propagation of plane harmonic waves in the infinitely extended medium separately in the form of dilatational and rotational dispersive waves. The effects of the microstructure and the micro-inertia on the dispersion curves are determined and discussed.  相似文献   

4.
The strain gradient elasticity theory with surface energy is applied to Boussinesq–Flamant problem. The solution for the vertical displacements at the surface of half space due to the surface normal line load is presented. The theory includes both volumetric and surface energy terms. Boussinesq–Flamant problem in the strain gradient elasticity is solved by means of Fourier transform. The results obtained show that the vertical displacements of half space in the gradient elasticity are some different from that in the classical elasticity and the effects of the strain gradient parameters (material characteristic lengths) on the vertical displacements do exist.  相似文献   

5.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

6.
The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration is studied. In particular the effect of surface tension on partially liquid filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without a baffle have been investigated. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and torsional moment acting on the spacecraft. As viscous force (between liquid and solid interface), and surface tension force (between liquid-vapor-solid interface) greatly contribute to the damping effect of slosh wave excitation, a rotating dewar with baffle provides more areas of liquid-solid and liquid-vapor-solid interfaces than that of a rotating dewar without baffle. Results show that the damping effect provided by the baffle reduces the amplitude of slosh wave excitation, lowers the fluid force, torque, and the moment arm of fluid torque fluctuations than that without baffle, and also lowers the degree of asymmetry in the liquid-vapor distribution.  相似文献   

7.
The present study investigates the microstructural size effect on the strength of a bar under axial loading, and on the toughness and crack growth of a beam under three-point bending within the framework of strain gradient elasticity. The gradient responses have been found considerably tougher as compared to the classical theory predictions and the observed deviation increases with increasing values of the non-dimensional parameter g/L (microstructural length over structural length). Based on the analytical solution of the strain energy release rate for the three-point bending case, a new, simple and universal, strain gradient elasticity, brittle fracture criterion and a new, size adjusted fatigue crack growth law have been established. Finally, the analytical predictions of the current modeling compare well with previous experimental data, based on three-point bending tests on single-edge notched concrete beams.  相似文献   

8.
捷联惯组减振系统角振动、线振动共振频率理论分析   总被引:1,自引:0,他引:1  
当前实际工程中,角振动试验技术和设备尚不成熟。以指导捷联惯组减振系统设计过程为目的,结合捷联惯性组合减振系统对角共振频率的特殊要求,对线振动、角振动共振频率的关系进行了分析与讨论。建立了捷联惯性组合减振系统的动力学模型,得到了捷联惯组减振系统数学模型,利用刚体动力学方法分析捷联惯组的转动惯量和回转半径,得出理想情况下捷联惯性组合减振系统线共振、角共振频率存在一定的比例关系,并与减振器安装中心到转动中心线的平均距离和惯组回转半径有关的结论。最后讨论了改变减振系统刚度和减振器布置方式两种改变共振频率的方法,并对两种方法进行了比较。  相似文献   

9.
A screw dislocation outside an infinite cylindrical nano-inhomogeneity of circular cross section is considered within the isotropic theory of gradient elasticity. Fields of total displacements, elastic and plastic distortions, elastic strains and stresses are derived and analyzed in detail. In contrast with the case of classical elasticity, the gradient solutions are shown to possess no singularities at the dislocation line. Moreover, all stress components are continuous and smooth at the interface unlike the classical solution. As a result, the image force exerted on the dislocation due to the differences in elastic and gradient constants of the matrix and inhomogeneity, remains finite when the dislocation approaches the interface. The gradient solution demonstrates a non-classical size-effect in such a way that the stress level inside the inhomogeneity decreases with its size. The gradient and classical solutions coincide when the distances from the dislocation line and the interface exceed several atomic spacings.  相似文献   

10.
This paper deals with the propagation of acceleration waves in constrained linear elastic materials, within the framework of the so-called linearized finite theory of elasticity, as defined by Hoger and Johnson in [12, 13]. In this theory, the constitutive equations are obtained by linearization of the corresponding finite constitutive equations with respect to the displacement gradient and significantly differ from those of the classical linear theory of elasticity. First, following the same procedure used for the constitutive equations, the amplitude condition for a general constraint is obtained. Explicit results for the amplitude condition for incompressible and inextensible materials are also given and compared with those of the classical linear theory of elasticity. In particular, it is shown that for the constraint of incompressibility the classical linear elasticity provides an amplitude condition that, coincidently, is correct, while for the constraint of inextensibility the disagreement is first order in the displacement gradient. Then, the propagation condition for the constraints of incompressibility and inextensibility is studied. For incompressible materials the propagation condition is solved and explicit values for the squares of the speeds of propagation are obtained. For inextensible materials the propagation condition is solved for plane acceleration waves propagating into a homogeneously strained material. For both constraints, it is shown that the squares of the speeds of propagation depend by terms that are first order in the displacement gradient, while in classical linear elasticity they are constant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A gradient micropolar elasticity is proposed based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium. This theory is an extension of the theory of micropolar elasticity with couple stresses together with gradient elasticity in a way that in addition to hyper stresses, hyper couple stresses also appear. In particular, the strain energy, besides its dependence upon the distortion and bend-twist terms of a micropolar medium (Cosserat continuum), depends also on distortion and bend-twist gradients. Using a simplified but rigorous version of this gradient theory, we can connect it to Eringen's nonlocal micropolar elasticity. In addition, it is used to study a screw dislocation in gradient micropolar elasticity. One important result is that we obtained nonsingular expressions for the force and couple stresses. The components of the force stress have maximum values near the dislocation line and those of the couple stress have maximum values at the dislocation line.  相似文献   

12.
Within the framework of Mindlin’s dipolar gradient elasticity, general energy theorems are proved in this work. These are the theorem of minimum potential energy, the theorem of minimum complementary potential energy, a variational principle analogous to that of the Hellinger–Reissner principle in classical theory, two theorems analogous to those of Castigliano and Engesser in classical theory, a uniqueness theorem of the Kirchhoff–Neumann type, and a reciprocal theorem. These results can be of importance to computational methods for analyzing practical problems. In addition, the J-integral of fracture mechanics is derived within the same framework. The new form of the J-integral is identified with the energy release rate at the tip of a growing crack and its path-independence is proved.The theory of dipolar gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory considered here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. The latter case is also treated in the present study.  相似文献   

13.
The buckling of a bar is studied analytically on the basis of a simple linear theory of gradient elasticity in the frame of the method of initial values. The method of initial values provides the values of the displacements and stress resultants throughout the bar once the initial displacements and initial stress resultants are known. We use probably for the first time the method of initial values to get critical loads of a strain gradient beam under completely different boundary conditions at the two end faces of the beam. Exact carryover matrix is presented for the classical beam and gradient beam analytically. The first mode shapes of classical beam and gradient beam are plotted. The method of initial values is also applied to the beams with variable cross-section. The priorities of the method of initial values are depicted. The variational approach gives a sixth-order ordinary differential equation for a beam in buckling. The additional boundary conditions are used to obtain critical loads. It is observed that critical loads increase dramatically for increasing values of the gradient coefficient.  相似文献   

14.
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lomer–Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.  相似文献   

15.
Exact closed-form expressions are derived for the torsional stiffnesses of spherical rubber bush mountings in the two principal modes of angular deformation, based upon the classical theory of elasticity. Agreement is found, as limiting cases, with the known results for the torsional stiffness and shear stiffness of an elastomer pad of circular cross-section.  相似文献   

16.
Experiments and theory in strain gradient elasticity   总被引:2,自引:0,他引:2  
Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.  相似文献   

17.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

18.
In this paper, stability and bifurcations in a simply supported rotating shaft are studied. The shaft is modeled as an in-extensional spinning beam with large amplitude, which includes the effects of nonlinear curvature and inertia. To include the internal damping, it is assumed that the shaft is made of a viscoelastic material. In addition, the torsional stiffness and external damping of the shaft are considered. To find the boundaries of stability, the linearized shaft model is used. The bifurcations considered here are Hopf and double zero eigenvalues. Using center manifold theory and the method of normal form, analytical expressions are obtained, which describe the behavior of the rotating shaft in the neighborhood of the bifurcations.  相似文献   

19.
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced.  相似文献   

20.
This work studies the response of bodies governed by dipolar gradient elasticity to concentrated loads. Two-dimensional configurations in the form of either a half-space (Flamant–Boussinesq type problem) or a full-space (Kelvin type problem) are treated and the concentrated loads are taken as line forces. Our main concern is to determine possible deviations from the predictions of plane-strain/plane-stress classical linear elastostatics when a more refined theory is employed to attack the problems. Of special importance is the behavior of the new solutions near to the point of application of the loads where pathological singularities and discontinuities exist in the classical solutions. The use of the theory of gradient elasticity is intended here to model material microstructure and incorporate size effects into stress analysis in a manner that the classical theory cannot afford. A simple but yet rigorous version of the generalized elasticity theories of Toupin (Arch. Ration. Mech. Anal. 11:385–414, 1962) and Mindlin (Arch. Ration. Mech. Anal. 16:51–78, 1964) is employed that involves an isotropic linear response and only one material constant (the so-called gradient coefficient) additional to the standard Lamé constants (Georgiadis et al., J. Elast. 74:17–45, 2004). This theory, which can be viewed as a first-step extension of the classical elasticity theory, assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. The solution method is based on integral transforms and is exact. The present results show departure from the ones of the classical elasticity solutions (Flamant–Boussinesq and Kelvin plane-strain solutions). Indeed, continuous and bounded displacements are predicted at the points of application of the loads. Such a behavior of the displacement fields is, of course, more natural than the singular behavior present in the classical solutions.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号