首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol–gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm−3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.  相似文献   

2.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

3.
《Solid State Ionics》2006,177(19-25):1985-1989
The application of the electrophoretic deposition (EPD) technique to the preparation of high quality electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs) was investigated. Films of La0.83Sr0.17Ga0.83Mg0.17O2.83 (LSGM) were deposited on Pt and La0.8Sr0.2MnO3 (LSM) substrates from suspensions in acetone/ethanol (3:1 by volume) mixture solvent and sintered at 1300 °C. Pt supported LSGM films, 10–20 μm thick, exhibited good adhesion to the Pt substrate, well-distributed microporosity and some surface roughness. LSM supported films exhibited cracking after sintering at 1300 °C for 3 h. Up to 900 °C the bulk conductivity of the Pt supported LSGM film showed the same behaviour of LSGM pellet (Ea = 0.93 eV and 0.99 eV, respectively). The LSGM film exhibited lower bulk electrical conductivity than the latter (4.1 × 10− 3 and 4.4 × 10− 2 Ω− 1 cm− 1, respectively, at 700 °C). This difference should be ascribed to the slight Ga depletion in the LSGM film. An important issue remains the selection of adequate electrode for LSGM electrolyte films.  相似文献   

4.
《Current Applied Physics》2010,10(3):790-796
CdO and Al-doped CdO nano-crystalline thin films have been prepared on glass at 300 °C substrate temperature by spray pyrolysis. The films are highly crystalline with grain size (18–32 nm) and found to be cubic structure with lattice constant averaged to 0.46877 nm. Al-doping increased the optical transmission of the film substantially. Direct band gap energy of CdO is 2.49 eV which decreased with increasing Al-doping. The refractive index and dielectric constant varies with photon energy and concentration of Al as well. The conductivity of un-doped CdO film shows metallic behavior at lower temperature region. This behavior dies out completely with doping of Al and exhibits semiconducting behavior for whole measured temperature range. Un-doped and Al-doped CdO is an n-type semiconductor having carrier concentration is of the order of ∼1021 cm−3, confirmed by Hall voltage and thermo-power measurements.  相似文献   

5.
New proton-conductive polyamide oligomers, oligomeric poly[(1, 2-propanediamine)-alt-(oxalic acid)], were synthesized to investigate the proton transport properties of bulk and thin films. The obtained oligomers were characterized by the X-ray diffraction, FT-IR spectra, 1H NMR, Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrum, and electrical conductivity measurements. The bulk proton conductivity is 3.0 × 10? 4 S cm? 1 at the relative humidity (RH) of 80%. The proton conductivity of thin film is relatively higher than that of bulk sample. Thickness dependence of the proton conductivity was observed in these thin films. The maximum proton conductivity of the thin film is 4.0 × 10? 3 S cm? 1 at the relative humidity (RH) of 80%, which is higher one order magnitude than that of the bulk sample. The activation energies of bulk and 200 nm thick film are 1.0 and 0.69 eV at the RH of 60%, respectively.  相似文献   

6.
《Current Applied Physics》2010,10(2):386-390
Mo-doped In2O3 thin films have been prepared on glass substrates using an activated reactive evaporation method and systematically studied the effect of oxygen partial pressure on the structural, optical, electrical and photoluminescence properties of the films. The obtained films are highly transparent and conductive. The films exhibited the lowest electrical resistivity of 5.2 × 10−4 Ω cm, with an average optical transmittance of 90% in the visible region. An intensive photoluminescence emission peaks were observed at 415 and 440 nm.  相似文献   

7.
We have studied the photoluminescence of a-SixGeyO1  x  yfilms with average Ge-nanocrystal sizes ranging from over 100 nm down to 2 nm. No systematic peak shift of the luminescence bands at 3.0 eV and 2.0 eV with the diameter of the nanocrystals is observed. Comparision with a simplified confinement model shows that quantum size effects cannot explain the blue luminescence. We propose the Ge20defect as a likely source for this band, based on considerations about the crystallization process.  相似文献   

8.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

9.
Sputtered deposited thin films of AlN:Pr and GaN:Pr emit in ultraviolet–visible and visible regions of the spectrum, respectively, under electron excitation in cathodoluminescence apparatus. The goal is to study the ultraviolet emission from Pr+3 when doped in nitride semiconductor hosts. Luminescence peaks at a wavelength of 295 nm (4.2 eV), 335 nm (3.7 eV) and 385 nm (3.24 eV) are observed as a result from 1S0  1G4, 1S0  1D2 and 1S0  1I6 transitions, respectively. However the 1S0  1G4 and 1S0  1D2 transitions are not observed when Pr+3 is doped in GaN host. The bandgap of GaN absorbs the ultraviolet radiation emitted from Pr+3 and hence GaN can be used as ultraviolet filter for radiation shielding and protection purposes. AlN is transparent to ultraviolet due to its wide bandgap of 6.2 eV.  相似文献   

10.
《Current Applied Physics》2009,9(5):1129-1133
Measurements of In2S3 and ZnIn2S4 sprayed thin films thermal characteristics have been carried out using the photodetection technique. The thermal conductivity k and diffusivity D were obtained using a new protocol based on photothermal signal parameters analysis. Measured values of k and D were respectively, (15.2 ± 0.85) W m−1K−1 and (69.8 ± 7.1) × 10−6 m2s−1 for In2S3, (7.2 ± 0.7) W m−1K−1 and (32.7 ± 4.3) × 10−6 m2s−1 for ZnIn2S4. These values are extremely important since similar compounds are more and more proposed as Cd-free alternative materials for solar cells buffer layers.  相似文献   

11.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

12.
Tungsten oxide (WO3) thin films were prepared by an electron beam deposition technique. Films were deposited onto fluorine-doped tin oxide (FTO)-coated glass substrates maintained at 523 K. The as-deposited films were found to be amorphous and crystallized after annealing at 673 K. The electrochromic and optical properties, structure, and morphology are strongly dependent on the annealing conditions. Cyclic voltammetry (C-V) was carried out in the potential range −1 to +1 V. Before and after colouration, the films were characterized by measuring transmittance and reflectance. The colouration efficiencies at 630 nm are about 39.4 cm2 C−1 and 122.2 cm2 C−1 for amorphous and crystalline films, respectively. An investigation of self-bleaching for the coloured film revealed that the film fades gradually over time.  相似文献   

13.
High quality solid electrolyte thin films was grown by pulsed laser deposition (PLD) using a high photon energy ArF excimer laser. Various amorphous thin films were successfully deposited on glass substrates from oxide targets; such as Li3PO4, LiBO2, Li2SiO3, Li2CO3, Li2SO4, Li2ZrO3, LiAlO2, Li2WO4 and Ohara glass ceramics. The morphology, optical property and ionic conductivity of these films were examined by optical microscope, UV–VIS spectroscopy and impedance analysis. Dramatic improvement of the film morphology was observed by using a high photon energy laser, while the broken film with many droplets was obtained by using lower ones. Ionic conductivity of the films was examined by impedance spectroscopy and dc polarization method. For example, an ionic conductivity of a Li3PO4 film was 4.6 × 10? 6 S cm? 1 at 25 °C with activation energy of 0.57 eV. Electronic conductivity measurements revealed that most of the films were pure lithium ion conductors, while a Li2WO4 film was a mixed conductor.  相似文献   

14.
Undoped CdO films were prepared by sol–gel method. Transparent heterojunction diodes were fabricated by depositing n-type CdO films on the n-type GaN (0001) substrate. Current–voltage (IV) measurements of the device were evaluated, and the results indicated a non-ideal rectifying characteristic with IF/IR value as high as 1.17×103 at 2 V, low leakage current of 4.88×10−6 A and a turn-on voltage of about 0.7 V. From the optical data, the optical band gaps for the CdO film and GaN were calculated to be 2.30 eV and 3.309 eV, respectively. It is evaluated that interband transition in the film is provided by the direct allowed transition. The n-GaN (0001)/CdO heterojunction device has an optical transmission of 50–70% from 500 nm to 800 nm wavelength range.  相似文献   

15.
The optical properties of the ErxYb2?xSi2O7 thin films were investigated by photoluminescence measurements and the intense 974 nm light emission was observed. The 974 nm emission was mainly from the transition 2F5/2 to 2F7/2 level of Yb3+ upon exploring energy-transfer via up-conversion at Er3+ 4I13/2 level. Under 972 nm excitation, the lifetime at Er3+ 4I13/2 level reaches up to 4 ms for film containing 2 at% Er3+, while decreases to about 20 μs as the film is pumped by 488 nm. This confirmed that the energy transfer up-conversion process was the dominant transition at Er3+ 4I13/2 level. This may be of interest to improve the solar cells′ efficiency by placing this film at the rear of cell, converting the near-infrared photons between 1480 nm and 1580 nm to just above the Si bandgap.  相似文献   

16.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

17.
TiO2 thin films were prepared by sol-gel method. The structural investigations performed by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) showed the shape structure at T = 600 °C. The optical constants of the deposited film were obtained from the analysis of the experimentally recorded transmittance spectral data in the wavelength of 200–3000 nm range. The values of some important parameters of the studied films are determined, such as refractive index n and thickness d. In this work, using the transmission spectra, we have calculated the dielectric constant (ε) for four layered TiO2 films; a simple relation is suggested to estimate the third-order optical nonlinear susceptibility χ(3). It has been found that the dispersion data obeyed the single oscillator of the Wemple–DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. The estimations of the corresponding band gap Eg, χ(3) and ε are 2.57 eV, 0.021 · 10−10 esu and 5.20, respectively.  相似文献   

18.
In this paper, we synthesize and characterize a thin film thermometer structure for infrared microbolometers. The structure is composed of alternating multilayers of Vanadium pentoxide (V2O5), 25 nm, and Vanadium (V), 5 nm, thin films deposited by rf magnetron and dc magnetron sputtering respectively and annealed for 20, 30 and 40 min at 300 °C in Nitrogen (N2) atmosphere. The best achieved temperature coefficient of resistance (TCR) was found to be −2.57%/K for 40 min annealed samples. Moreover, we apply, for the first time, the photo-thermal deflection (PTD) technique for measuring the thermal conductivity of the synthesized thin films. The thermal conductivity of the developed thin films reveals an increase in thermal conductivity from 2 W/m K to 5.8 W/m K for as grown and 40 min annealed samples respectively.  相似文献   

19.
3 MeV electron irradiation induced-defects in CuInSe2 (CIS) thin films have been investigated. Both of the carrier concentration and Hall mobility were decreased as the electron fluence exceeded 1×1017 cm−2. The carrier removal rate was estimated to be about 1 cm−1. To evaluate electron irradiation-induced defect, the electrical properties of CIS thin films before and after irradiation were investigated between 80 and 300 K. From the temperature dependence of the carrier concentration in non-irradiated thin films, we obtained ND=1.8×1017 cm−3, NA=1.7×1016 cm−3 and ED=18 meV from the SALS fitting to the experimental data on the basis of the charge balance equation. After irradiation, a new defect level was formed, and NT0=1.4×1017 cm−3 and ET=54 meV were also obtained from the same procedure. From the temperature dependence of Hall mobility, the ionized impurity density was discussed before and after the irradiation.  相似文献   

20.
《Physics letters. A》2020,384(28):126741
The potential of C3N nanoribbons used as anode material for lithium-ion batteries has been systematically investigated through first-principles calculations. The results suggest that C3N nanoribbons have excellent mechanical properties (stiffness ranging from 286.28 to 412.69 N m−1) and good electronic conductivity (with a bandgap of 0-0.31 eV). Further studies reveal that the H-passivated C3N nanoribbons have high Li insertion capacity (708.60 mA h g−1) and significantly enhanced Li binding strength (0.21-2.11 eV) without the sacrifice of Li mobility. The high stiffness, superior cycle performance, good electronic conductivity, and excellent Li migration capability indicate the great potential of C3N nanoribbons to be an anode material. The calculated results provide the valuable insights for the development of high-performance C3N nanoribbons electrode materials in lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号