首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we reported the effect of Li2CO3 addition on the structural, optical, ferroelectric properties and electric-field-induced strain of Bi0.5(Na,K)0.5TiO3 (BNKT) solid solution with CaZrO3 ceramics. Both rhombohedral and tetragonal structures were distorted after adding Lithium (Li). The band gap values decreased from 2.91 to 2.69 eV for 5 mol% Li-addition. The maximum polarization and remanent polarization decreased from 49.66 μC/cm2 to 27.11 μC/cm2 and from 22.93 μC/cm2 to 5.35 μC/cm2 for un-doped and 5 mol% Li- addition BNKT ceramics, respectively. The maximum Smax/Emax value was 567 pm/V at 2 mol% Li2CO3 access. We expected this work will help to understand the role of A-site dopant in lead-free ferroelectric BNKT materials.  相似文献   

2.
《Current Applied Physics》2010,10(4):1196-1202
New lead-free ceramics (Bi0.92Na0.92−xLix)0.5Ba0.06Sr0.02TiO3 have been fabricated by a conventional ceramic technique and their electrical properties have been studied. X-ray diffraction studies reveal that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. The partial substitution of Li+ for Na+ increases the remanent polarization Pr of the ceramics. Because of the large Pr and low coercive field Ec, the ceramics with x = 0.075–0.125 exhibit excellent piezoelectric properties: d33 = 189–235 pC/N, kp = 33.6–36.3% and kt = 51.6–54.3%. The ceramics exhibit relaxor behaviors after the substitution of Li+ for Na+. Our results also suggest that polar and non-polar phases may coexist in the ceramics at temperatures above the depolarization temperature Td.  相似文献   

3.
Na self-diffusion, Li self-diffusion, Na+–Li+ ion exchange, electrical conductivity, and mechanical relaxation have been studied below Tg on glasses of the system ZrF4–BaF2–LaF3–AF (A=Na, Li), with A=10, 20, 30 mol%. Compared to the transport mechanism in alkali-containing silicate glasses, the mechanisms in these non-oxide glasses are anomalous. Thus the self-diffusion coefficient of Na decreases with increasing NaF content, whereas that of Li increases with increasing LiF content. Both the electrical conductivity and the Na+–Li+ ion exchange reach a minimum at ≈ 20 mol% LiF, and the mechanical relaxation shows one peak for the 20 and 30 mol% LiF-glasses and two peaks for the glass with 10 mol% LiF, evidencing both a contribution of F and Li+ ions to the transport. Moreover, the presence of the three partially interacting mobile species F, Na+, Li+ obviously leads to an anionic–cationic mixed ion effect. Applying the Nernst–Einstein equation to the Li+ transport in LiF-containing glasses shows that its mechanism is dissimilar to that in oxide glasses. Calculated short jump distances possibly can be interpreted as an Li+ movement via energetically suitable sites near F ions. Likewise the Nernst–Planck model, successfully applied to the ionic transport in mixed alkali silicate glasses, obviously does also not hold for the present heavy metal fluoride glasses.  相似文献   

4.
《Solid State Ionics》2006,177(1-2):129-135
LixV2O5 (0.4 < x < 1.4) prepared by solid-state reaction were studied by 7Li and 51V NMR spectroscopy. 7Li NMR spectra showed a narrowing of the line width in relation to Li+ionic diffusion. Analysis of LixV2O5 using a Debye-type relaxation model showed a low activation energy ∼0.07 eV in the sample of x = 0.4 below room temperature, and revealed a Li+ionic diffusion with larger activation energy ∼0.5 eV above 450 K in lithium-rich samples. The latter is ascribed to the existence of a multi-phase system comprising stable ɛ- and γ-phases, resulting from complicated phase transitions at high temperature. These shapes and shifts enable the classification of the β-, ɛ-, δ-, and γ-phases. The ionic diffusion of Li+ ions is discussed in relation to the complicated phase transitions.  相似文献   

5.
《Current Applied Physics》2010,10(4):1059-1061
Lead-free 0.79(Bi0.5Na0.5)TiO3–0.14[Bi0.5(K0.5−xLix)]TiO3–0.07BaTiO3 (BNBK79 + xLi, x = 0.0, 0.1, 0.2, 0.25, 0.3, and 0.4) ceramics were prepared by conventional solid state reaction process. The crystalline structures and surface morphologies are investigated by X-ray diffraction method and scanning electron microscopy. Dielectric and piezoelectric properties were measured. With increasing of lithium substitution, the Curie temperatures of BNBK79 + xLi ceramics increase, but the maximum value of the dielectric constant decreases. And a relatively large remnant polarization of 17.6 μC/cm2 and 157 pC/N of d33 has been obtained when x = 0.3.  相似文献   

6.
The diffusion coefficients of lithium ions (DLi+) in nano-Si were determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). DLi+ values are estimated to be ~ 10? 12 cm2 s? 1 and exhibit a “W” type varying with the lithium concentration in silicon. Two minimum regions of DLi+ (at Li2.1 ± 0.2Si and Li3.2 ± 0.2Si) are found, which probably result from two amorphous compositions (a-Li7Si3 and a-Li13Si4). Besides the two minimum regions, one maximum DLi+ is observed at Li15Si4, corresponding to the crystallization of highly lithiated amorphous LixSi.  相似文献   

7.
In this work we demonstrate the preparation of Er3+ doped perovskite ferroelectric Na0.5Bi0.5TiO3 nanocrystals and their application in temperature sensing. The samples were synthesized via a facile hydrothermal method. Upconversion emission at 528 nm and 547 nm from two thermodynamically coupled excited states of Er3+ were recorded in the temperature from 80 K to 480 K under the excitation of a 980 nm diode laser. The emission intensity ratio (I528/I547) as a function of the temperature was investigated. A sensitivity of 0.0053 K−1 is observed at 400 K, suggesting they are promising candidate for nanothermometers.  相似文献   

8.
A trace amount (0.5 mol%) of CuO-doped 40Li2O–32Nb2O5–28SiO2 glass (mol%) exhibits the formation of copper metal layers at the glass surface by annealing at temperatures (530 °C) below the glass transition temperature (544 °C) in the reduced atmosphere of 7% H2–93%Ar. The coordination state of copper ions is examined from optical absorption and Fourier transform infrared (FT-IR) spectrum measurements, indicating the formation of Si–OH and Si–H bonds due to the diffusion of hydrogen into the inside of the glass and the reduction of Cu+ and Cu2+ ions. The mechanism of the formation of copper metals at the surface is proposed, in which the key points are the reduction of Cu2+ to Cu+ ions due to the hydrogen and the migration of Cu+ ions in the interior of the glass to the surface. The first finding on copper metal layers at the glass surface might have a potential for practical applications such as electrodes in glass.  相似文献   

9.
《Solid State Ionics》2006,177(9-10):821-826
The temperature dependence of the spin-lattice relaxation time, T1 and the line width of the 7Li nucleus were measured in delithiated LixCoO2 (x = 0.6, 0.8, 1.0). Two different relaxation behaviors were observed in the temperature dependence of T1 1 in a x = 0.8 sample. These would have arisen from inequivalent Li sites in two coexisting phases; an original hexagonal (HEX-I) and a modified hexagonal (HEX-II) phase in the x = 0.8 sample. We analyzed using a phenomenological non Debye-type relaxation model. Motional narrowing in the line width was observed in each sample, the result revealing that Li+ ions begin to move at low temperature in samples with less Li content. It was found that the activation energy associating with Li+ ion hopping in the HEX-II phase is smaller than that in the HEX-I phase. These results show that the HEX-II phase produced in the Li deintercalation process would be suitable for Li+ ionic diffusion in multi-phase LixCoO2, and it is expected that this would enable fast ionic diffusion. Li+ ionic diffusion related to phase transition is discussed from 7Li NMR results.  相似文献   

10.
《Solid State Ionics》2006,177(1-2):89-93
The differential scanning calorimetry diagram of [Li0.2(NH4)0.8]2TeCl6 showed one anomaly at 526 K accompanied with a shoulder at 505 K.The conductivity plot exhibits two anomalies at 496 and 526 K, which characterize the beginning and the end of the crossing to superionic conductor state. The low temperature conduction is ensured essentially by Li+. A sudden jump confirms the presence of a superionic protonic transition related to the fast motion of Li+ and H+ ions. Above 526 K, the high temperature phase is characterized by high electrical conductivity (10 3 Ω 1 m 1) and low activation energy (Ea < 0.3 eV).The dielectric constant evolution as a function of frequency and temperature revealed the same anomaly.Transport properties in this material appear to be due to Li+ and H+ ions' hopping mechanism.  相似文献   

11.
《Solid State Ionics》2006,177(1-2):121-127
Lithium cobalt vanadate LixCoVO4 (x = 0.8; 1.0; 1.2) has been prepared by a solid state reaction method. The XRD analysis confirms the formation of the sample. A new peak has been observed for Li1.0CoVO4 and for Li1.2CoVO4 indicating the formation of a new phase. The XPS analysis indicates the reduction in the oxidation of vanadium and oxygen with the addition of Li in LixCoVO4 (x = 0.8, 1.0, 1.2). The impedance analysis gives the conductivity value as 2.46 × 10 5, 6.16 × 10 5, 9 × 10 5 Ω 1 cm 1 for LixCoVO4 (x = 0.8; 1.0; 1.2), all at 623 K. The similarity in the bulk activation energy (Ea) and the activation enthalpy for migration of ions (Eω) indicate that the conduction in Li1.2CoVO4 has been due to hopping mechanism.  相似文献   

12.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

13.
Hongjie Zhang  Gang Chen  Xin Li 《Solid State Ionics》2009,180(36-39):1599-1603
Photocatalysts Bi4Ti3 ? xCrxO12(x = 0.00, 0.06, 0.15, 0.30, 0.40, and 0.50) with perovskite structure were synthesized by sol–gel method and their electronic structures and photocatalytic activities were investigated. The Bi4Ti2.6Cr0.4O12 photocatalyst exhibited the highest performance of H2 evolution in methanol aqueous solution (58.1 μmol h? 1 g? 1) under visible light irradiation (λ > 400 nm) without a co-catalyst, whereas no H2 evolution is observed for Bi4Ti3O12 under the same conditions. The UV–vis spectra indicated that the Bi4Ti2.6Cr0.4O12 had strong photoabsorption in the visible light region. The results of density functional theory (DFT) calculation illuminate that the conduction bands of Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 6p orbitals, and the valence bands are composed of O 2p + Bi 6s hybrid orbitals, while the conduction bands of chromium-doped Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 2p + Cr 3d orbitals, and the O 2p + Cr 3d hybrid obitals are the main contribution to the valence band.  相似文献   

14.
15.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

16.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

17.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

18.
Single crystals of Li4 + xTi5O12 were prepared by means of electrochemical Li-ion intercalation technique using parent Li4Ti5O12 single crystals. The obtained Li4 + xTi5O12 (x = 1.35) crystallizes in the cubic spinel-related type structure, space group Fd3?m, and lattice parameters of a = 8.346(2) Å and V = 581.3(5) Å3 and Z = 8. The Li-ion intercalated sites were successfully determined to be both the 8a and 16c sites by using the difference Fourier synthesis map. The structure was determined by single-crystal X-ray structure analysis and refined to the conventional value of R = 3.7% for 132 independent observed reflections. The chemical composition has been determined to be Li5.35Ti5O12 from the result of site-population refinements. In addition, theoretical electron density distributions and total energy were calculated for three postulated compounds of “Li4.5Ti4.5O12” and “Li4.5 + xTi4.5O12” with x = 1.5 and 3.0.  相似文献   

19.
BaBi4Ti4O15 (BBT) ceramic was synthesized using mixed oxide route and the structural and electrical properties were investigated systematically. The structural studies confirmed it to be an n=4 member of the Aurivillius oxide. A broad dielectric peak with frequency dependent dielectric maximum temperature was observed. The dielectric relaxation obeyed the Vogel–Fulcher relation wherein f0=8.37E+14 Hz, Ea=0.13 eV, and Tf=608.18 K. The diffuseness parameter γ established the relaxor nature and it was attributed to the A-site cationic disorder. The specimen exhibited the excellent reproducibility in the measurements of displacement current, a remnant polarization of 5.4 μC/cm2, and a coercive field of 4.03 MV/m. The room temperature piezoelectric coefficient d33 was found to be 23 pC/N and the field-induced strain S was about 0.018% at the 8 MV/m electric field.  相似文献   

20.
AlOOH:Cr3 + powders were synthesized via a microwave solvothermal route at 433 K for 30 min and were used as the precursor and template for the preparation of γ-Al2O3:Cr3 + by thermal transformation at 773 K for 2 h in air. The obtained γ-Al2O3 based powders were microspheres with an average diameter about 1.9 μm. Photoluminescence (PL) spectra showed that the Al2O3:Cr3 + particles presented a symmetric broad R band at 696 nm without appreciable splitting when excited at 462 nm. It is shown that the 0.04 mol% of doping concentration of Cr3 + ions in γ-Al2O3:Cr3 + is optimum. According to Dexter's theory, the critical distance between Cr3 + ions for energy transfer was determined to be 47.54 Å. Based on the corresponding PL spectrum, full width at half maximum (FWHM) of Al2O3:Cr3 + (0.04 mol%) was calculated to be 3.35 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号