首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper large deflection and rotation of a nonlinear Bernoulli-Euler beam with variable flexural rigidity and subjected to a static co-planar follower loading is studied. It is assumed that the angle of inclination of the force with respect to the deformed axis of the beam remains unchanged during deformation. The governing equation of this problem is solved analytically for the first time using a new kind of analytical technique for nonlinear problems, namely the Homotopy Analysis Method (HAM). The present solution can be used for the analysis of a wide range of loads, material/cross section properties and lengths for beams undergoing large deformations. The results obtained from HAM are compared with results reported in previous works. Finally, the load–displacement characteristics of a uniform cantilever beam with different material properties under a follower force applied normal to the deformed beam axis are presented.  相似文献   

2.
Earlier it was shown in [1, 2] that the equations of classical nonlinear elasticity constructed for the case of small strains and arbitrary displacements are ill posed, because their use in specific problems may result in the appearance of “spurious” bifurcation points. A detailed analysis of these equations and the construction, in their stead, of consistent equations of geometrically nonlinear theory of elasticity can be found in [3]. Certain steps in this direction were also made in [4, 5]. In [3], it was also stated that the methods and applied program packages (APPs) based on the use of the classical relations of nonlinear elasticity require some revision and correction. In the present paper, this conclusion is justified and confirmed by numerical finite-element solutions of several three-dimensional geometrically nonlinear deformation problems and linearized problems on the stability of equilibrium of a rectilinear beam. These solutions were obtained by using two APPs developed by the authors and the well-known APP “ANSYS.” It is shown that the classical equations of the geometrically nonlinear theory of elasticity, which underly the first of the developed APP and the well-known APP “ANSYS,” often lead to overestimated buckling loads for structural members as compared with the consistent equations proposed in [1–3].  相似文献   

3.
The paper describes an experimental technique for obtaining the response of a “plastic hinge” to low-cycle alternating loads in which a deflection (strain) range is prescribed. The cycle of loading is confined to equal amplitudes of positive and negative curvature. This response is expressed in terms of a nonlinear moment-curvature relationship which may subsequently be employed in “pseudo-static” structural analysis to derive the load-deflection characteristics of elastic-plastic beams at various stages of cyclic history. A brief account is presented of a fatigue machine designed and constructed for testing mild steel at low endurance levels. A fixture for pure bending is designed to adapt the machine for testing beams and also to provide a measuring system for the applied alternating moments. A meter to measure the curvature in this environment is also described in detail. Similar fixtures are also described for testing cantilever-beam specimens. Moment-curvature models are generated for beams under terminal alternating moments in which ambient strain conditions are controlled. Paper was presented at 1967 SESA Annual Meeting held in Chicago on October 31–November 3.  相似文献   

4.
The paper presents a generic solution methodology for a quasi-static homogeneous monoclinic piezoelectric beam under axially distributed electric and mechanical surface loads and body forces expressed as polynomials of degree K≥ 0 of the axis variable. (In the absence of any electrical loading, this problem is known as the Almansi–Michell problem). The stress and the electrical displacement components are presented as a set of polynomials of degree ≤K+2 of the axis variable (“solution hypothesis”) containing 4K unknown tip loading constants and 3K stress functions of two variables. The cases K=0,1 stand for uniform or linear distributed loads in the axis direction. The analysis is initiated by the Kth level and continues down to lower levels. The main result of this work generalizes the “elastic” solution given recently by O. Rand and the first author (2005). Examples of solutions for axially uniform distributed loads (K=0), and equilibrium in which the stress and the electrical displacement do not depend on the axis variable, are presented. The applications to constant body loads and a hydrostatic pressure are considered.   相似文献   

5.
The mechanical model was established for the anti-plane fracture problem of a functionally graded coating–substrate system with a coating crack inclined to the weak/micro-discontinuous interface. The Cauchy singular integral equation for the crack was derived using Fourier integral transform, and the Lobatto–Chebyshev collocation method put up by Erdogan and Gupta was used to get its numerical solution. Finally, the effects of the weak/micro-discontinuity of the interface on SIFs were analyzed, the “affected regions” corresponding to the two crack tips have been obtained and their engineering significance was discussed. It was indicated that, for the crack tip in the corresponding “affected region”, to reduce the weak-discontinuity of the interface and to make the interface micro-discontinuous are the two effective ways to reduce the SIF, and the latter way always has more remarkable SIF-reduction effect. For the crack tip outside the “affected region”, its SIF is mainly influenced by material stiffness, and to prevent such a tip from growing toward the interface “softer coating and stiffer substrate” is a more advantageous combination than “stiffer coating and softer substrate”.  相似文献   

6.
The problem of a symmetric wave impact on the Euler beam is solved by the normal modes method. The liquid is supposed to be ideal and incompressible. The initial stage of impact when hydrodynamic loads are very high and the beam is wetted only partially is considered. The flow of a liquid and the size of the wetted part of the body are determined by the Wagner approach with a simultaneous calculation of the beam deflection. The specific features of the developed numerical algorithm are demonstrated and the criterion of its stability is specified. In addition to a direct solution of the problem, two approximate approaches within the framework of which the dimension of the contact region is found ignoring the deformations of the plate are considered. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhnaika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 134–147, September–October, 1998.  相似文献   

7.
The effect of initial disturbances and unsteady external loading on an elastic beam of finite length which floats freely on the surface of an ideal incompressible fluid is studied in a linear treatment. The fluid flow is considered potential. The beam deflection is sought in the form of an expansion in the eigenfunctions of beam vibrations in vacuum with time-dependent amplitudes. The problem reduces to solving an infinite system of integrodifferential equations for unknown amplitudes. The memory functions entering this system are determined by solving the radiation problem. The beam behavior is studied for various loads with and without allowance for the weight of the fluid. The effect of fluid depth on beam deformation was determined by comparing with the previously obtained solutions of the unsteady problem for a beam floating in shallow water. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 85–94, January–February, 2006.  相似文献   

8.
This paper studies the very large deflection behavior of prismatic and non-prismatic cantilever beams subjected to various types of loadings. The formulation is based on representing the angle of rotation of the beam by a polynomial on the position variable along the deflected beam axis. The coefficients of the polynomial are obtained by minimizing the integral of the residual error of the governing differential equation and by applying the beam’s boundary conditions. Several numerical examples are presented covering prismatic and non-prismatic cantilever beams subjected to uniform, non-uniform distributed loads and tip concentrated loadings in vertical and horizontal directions. The loads considered in this study are restricted to the non-follower type loads. Cases with different loadings and geometries are compared with MSC/NASTRAN computer package. However, for some very large deflection case, the MSC/NASTRAN failed to predict the deflected shape due to divergence problems.  相似文献   

9.
在专用汽车开发中,遇到有磨擦时细长杆受集中载荷时大挠度弯曲变形件的设计问题,本文利用数值积分法对此进行讨论,提出有摩擦时细长杆悬臂梁所受最大弯矩计算方法,同时就磨擦力对变形的影响进行了分析,为此类杆件的强度计算提供依据。  相似文献   

10.
The problem of the formation of a “collective” shock wave reflected from a cloud of particles, which was previously observed in experiment, is considered. A criterion of formation of a reflected shock wave is obtained based on the numerical and analytical solutions of the problem. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 44–51, May–June, 1998.  相似文献   

11.
In a three-dimensional domain Ω with J cylindrical outlets to infinity the problem is treated how solutions to the stationary Stokes and Navier–Stokes system with pressure conditions at infinity can be approximated by solutions on bounded subdomains. The optimal artificial boundary conditions turn out to have singular coefficients. Existence, uniqueness and asymptotically precise estimates for the truncation error are proved for the linear problem and for the nonlinear problem with small data. The results include also estimates for the so called “do-nothing” condition.  相似文献   

12.
The problem of controlling the vibration of a transversely excited cantilever beam with tip mass is analyzed within the framework of the Euler–Bernoulli beam theory. A sinusoidally varying transverse excitation is applied at the left end of the cantilever beam, while a payload is attached to the free end of the beam. An active control of the transverse vibration based on cubic velocity is studied. Here, cubic velocity feedback law is proposed as a devise to suppress the vibration of the system subjected to primary and subharmonic resonance conditions. Method of multiple scales as one of the perturbation technique is used to reduce the second-order temporal equation into a set of two first-order differential equations that govern the time variation of the amplitude and phase of the response. Then the stability and bifurcation of the system is investigated. Frequency–response curves are obtained numerically for primary and subharmonic resonance conditions for different values of controller gain. The numerical results portrayed that a significant amount of vibration reduction can be obtained actively by using a suitable value of controller gain. The response obtained using method of multiple scales is compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. Numerical simulation for amplitude is also obtained by integrating the equation of motion in the frequency range between 1 and 3. The developed results can be extensively used to suppress the vibration of a transversely excited cantilever beam with tip mass or similar systems actively.  相似文献   

13.
The Nosé–Hoover thermostat is a deterministic dynamical system designed for computing phase space integrals for the canonical Gibbs distribution. Newton’s equations are modified by coupling an additional reservoir variable to the physical variables. The correct sampling of the phase space according to the Gibbs measure is dependent on the Nosé–Hoover dynamics being ergodic. Hoover presented numerical experiments to show that the Nosé–Hoover dynamics are non-ergodic when applied to the harmonic oscillator. In this article, we prove that the Nosé–Hoover thermostat does not give an ergodynamical system for the one- dimensional harmonic oscillator when the “mass” of the reservoir is large. Our proof of non-ergodicity uses KAM theory to demonstrate the existence of invariant tori for the Nosé–Hoover dynamical system that separate phase space into invariant regions. We present numerical experiments motivated by our analysis that seem to show that the dynamical system is not ergodic even for a moderate thermostat mass.  相似文献   

14.
We derive a sufficient condition for stability of a steady solution of the Navier–Stokes equation in a 3D exterior domain Ω. The condition is formulated as a requirement on integrability on the time interval (0, +∞) of a semigroup generated by the linearized problem for perturbations, applied to a finite family of certain functions. The norm of the semigroup is measured in a bounded sub-domain of Ω. We do not use any condition on “smallness” of the basic steady solution.   相似文献   

15.
A "swallowtail" cavity for the supersonic combustor was proposed to serve as an efficient flame holder for scramjets by enhancing the mass exchange between the cavity and the main flow. A numerical study on the "swallow- tail" cavity was conducted by solving the three-dimensional Reynolds-averaged Navier-Stokes equations implemented with a k-e turbulence model in a multi-block mesh. Turbu- lence model and numerical algorithms were validated first, and then test cases were calculated to investigate into the mechanism of cavity flows. Numerical results demonstrated that the certain mass in the supersonic main flow was sucked into the cavity and moved spirally toward the combustor walls. After that, the flow went out of the cavity at its lateral end, and finally was efficiently mixed with the main flow. The comparison between the "swallowtail" cavity and the conventional one showed that the mass exchanged between the cavity and the main flow was enhanced by the lateral flow that was induced due to the pressure gradient inside the cavity and was driven by the three-dimensional vortex ring generated from the "swallowtail" cavity structure.  相似文献   

16.
An efficient scheme, called quasi-linearization finite differences, is developed for large-deflection analysis of prismatic and non-prismatic slender cantilever beams subjected to various types of continuous and discontinuous external variable distributed and concentrated loads in horizontal and vertical global directions. Simultaneous equations of highly nonlinear and linear terms are obtained when casting the derived exact highly nonlinear governing differential equation using central finite differences on the nodes along the beam. A quasi-linearization scheme is used to solve these equations based on successive corrections of the nonlinear terms in the simultaneous equations. The nonlinear terms in the simultaneous equations are assumed constant during each correction (iteration). Several representative numerical examples of prismatic and non-prismatic slender cantilever beams with different loading conditions are analyzed to illustrate the merits of the adopted numerical scheme as well as its validity, accuracy and efficiency. The results of the present scheme are checked using large-displacement finite element analysis by the MSC/NASTRAN program. A comparison between the present secheme, MSC/NASTRAN and available results from the literature reveals excellent agreement. The advantage of the new scheme is that the load can be applied in one step with few iterations (3–6 iterations).  相似文献   

17.
Bilinear rheological lubrication mechanics provides an important basis for the designs of recently developed electrorheological (ER) “smart”journal bearings and those lubricated by mixed fluid-solid lubricants. But there is not yet a reliable and efficient numerical method for such a problem of non-Newtonian fluid mechanics. In the present paper, a finite element method (FEM) together with mat hematical programming solution is successfully used to solve such a problem. A reliable and generalized numerical method for the designs of electrorheological “smart” journal bearings and the bearings lubricated by mixed fluid-solid lubricant is presented.  相似文献   

18.
Summary  The transverse vibrations of elastic homogeneous isotropic beams with general boundary conditions due to a moving random force with constant mean value are analyzed. The boundary conditions considered are: pinned–pinned, fixed–fixed, pinned–fixed, and fixed–free. Based on the Bernoulli beam theory, the problem is described by means of a partial differential equation. Closed-form solutions for the variance and the coefficient of variation of the beam deflection are obtained and compared for three types of force motion: accelerated, decelerated and uniform. The effects of beam damping and speed of the moving force on the dynamic response of beams are studied in detail. Received 3 December 2001; accepted for publication 30 April 2002  相似文献   

19.
The parameter determination of viscoelastic material is a multi-variable, multi-aim nonlinear optimization problem, which made the optimization process very complicated. In this paper a hybrid optimal algorithm was proposed to determine the viscoelastic parameters in the constitutive relation according to the experimentally obtained mechanical properties. This algorithm merges the Broydon–Fletcher–Goldfarb–Shanno search into a genetic algorithm framework as a basic operator in order to enhance the local search capability. The proposed hybrid algorithm not only can reduce the iterative times greatly but can abolish the limitation of initial parameter values. Nonlinear material characteristic curve-fitting was carried out using the proposed algorithm and other existing approaches. And the comparison results show this algorithm is accurate and effective. The numerical simulation and experimental study of viscoelastic cantilever beam also indicates that the finite element formulation and the calculative viscoelastic model parameters are reliable. The proposed optimization method can be extended to further complex parameter estimation researches.  相似文献   

20.
We prove the asymptotic character of a solution of the Cauchy problem for a singularly perturbed linear system of differential equations with degenerate matrix of the coefficients of derivatives in the case where the limit matrix pencil is regular and has multiple “finite” and “infinite” elementary divisors. We establish conditions under which the constructed formal solutions are asymptotic expansions of the corresponding exact solutions. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 2, pp. 247–257, April–June, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号