首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports on investigations into the wind dependence of ambient noise in the Bay of Bengal. Ambient noise measurements were made in the shallow water of Bay of Bengal using a portable broadband, high frequency data acquisition system together with a sensitive hydrophone suspended from the measuring platform at a depth of 5 m from the surface where the ocean depth was 25 m. Periodic measurements were carried out for one year corresponding to a wind speed range between 2 m/s and 9 m/s during summer, monsoon and winter seasons. The proportionality of the noise level with wind speed for frequencies ranging from 500 Hz to 6 kHz for each season was studied. The analysis reveals that the correlation between the wind speed and the ambient noise spectrum level was higher at lower frequencies. The results of empirical fitting based on analysis were used for noise level prediction and the model predictions compare well with the measured noise level. Further it was observed that the wind generated noise level measured during summer was approximately 8 dB less than that in other seasons. On the other hand the proportionality between the noise level and the wind speed was less during winter.  相似文献   

2.
The results of measurements for the distribution of spectral density for underwater noise in the shelf zone of the Pacific Ocean 21 km from Shikotan Island at the depth of 130 m within the frequency range 1.9–11000 Hz at the wind speed 0–40 m/s are given. Measurements were conducted within the bands of 1/3- and 1/2-octave filters over six months. In the case of a realization length of 33 min and smaller, the distribution of the instant pressure values for underwater noise can be considered normal. The distribution of deep slow variations for the intensity of underwater noise at all frequencies differed from the normal one. The values for the asymmetry parameter and the coefficient of excess are given for the variation distribution of spectral density for underwater noise.  相似文献   

3.
张乾初  郭新毅  马力 《声学学报》2019,44(2):189-200
研究了由海浪谱导得的噪声源的相关函数对海洋环境噪声垂直空间相关性的影响。常用的海洋环境噪声空间相关性模型一般假设海面噪声源是非相关的,这种假设可以解释一些物理现象,但是与真实情况并不符合。考虑到风成噪声与海浪运动的相关性,引入海浪谱,得到噪声源的相关函数,利用Kuperman-Ingenito (K/I)噪声模型,计算海洋环境噪声的垂直相关性。通过仿真结果与实验数据对比可以看出,在高风速下,假设噪声源不相关时计算得到的噪声场垂直相关性与实验结果相差较大,而利用由海浪谱导得的噪声源的相关函数计算得到的噪声场的垂直相关性与实验结果符合较好。   相似文献   

4.
针对海上实验发现的船舶辐射噪声载波线谱两侧对称出现伴随线谱现象,建立了基于抛物方程近似理论的动态起伏海面条件下连续波信号传播预报模型,揭示了海面风速、收发距离、声源深度等因素对伴随调制线谱频率间隔和强度的影响规律。数值仿真结果表明,伴随调制线谱与其载波线谱的频率间隔由具有稳定频率的海面涌浪决定;伴随调制线谱强度随海面风速增大而增大;不同收发距离和声源深度等条件下伴随调制线谱强度随距离的变化趋势与其载波线谱强度基本一致,近水面(平均深度3 m以内)声源上移和下移伴随调制线谱能量大致相当,比载波线谱能量低约10 dB;除了载波传播损失大的深度外,非近水面声源上移和下移伴随调制线谱强度能量相差较大,比载波线谱能量整体上低约20 dB以上。对海上实测水面船辐射噪声数据进行长时间窗时频分析表明,上移和下移频率伴随调制线谱与载波线谱的间隔为0.1 Hz左右,伴随调制线谱强度与载波线谱强度相差约10 dB,与仿真分析结果一致。海面动态波动引起的船舶辐射噪声线谱伴随调制特性对水中目标特征识别等具有重要价值。   相似文献   

5.
基于2015年秋季南海深海区域43天的观测噪声与同步风速预报数据,研究南海风占主导海洋环境噪声风关特性,并对风生噪声源级公式进行修正。本地风速在3~14 m/s范围内变化时,在频段0.5~1.28 kHz,噪声强度近似正比于风速对数的2倍。据此关系,获得不同风速条件下的风生噪声谱级。将Harrison风生噪声源级公式和海面噪声传输模型结合,构建深海风生噪声数值计算模型,通过求取最优的风生噪声源级公式系数项,使得在风占主导频段和风速范围内实验谱级与数值结果误差平方和最小,对Harrison风生噪声源级公式进行修正,并使其适用频段范围拓宽两倍。最后,利用南海其它区域实验数据检验模型的适用性,结果表明,模型预报噪声级与实验值吻合度较高,可供预报南海风生海洋环境噪声级实际应用参考。   相似文献   

6.
研究台风“启德”经过南海北部对南海深海海洋环境噪声的影响,表明台风导致的风速增减、降雨强弱以及形成的长波涌浪均会影响海洋环境噪声级的大小变化,海洋环境噪声显著受到台风的影响。相同风级下,台风期间海洋环境噪声级与风速的相关性明显好于非台风期间。分析测量的415 h海洋环境噪声数据与风速、波高的相关性,频率大于300 Hz时,海洋环境噪声级与风速的互相关系数大于0.5,达到中度相关;频率大于630 Hz时,互相关系数介于0.8和0.9之间,达到高度相关;频率大于300 Hz时,海洋环境噪声级与风速的相关性好于海洋环境噪声级与波高的相关性。南海海洋环境噪声10~20 Hz的次声频与风速的相关性差,是因为南海航运繁忙,该频段的海洋环境噪声会受到航船噪声的影响,即使台风期间也不例外。   相似文献   

7.
The aeroacoustic wind tunnel at Brandenburg University of Technology at Cottbus is a newly commissioned research facility for the experimental study of sound generation from bodies immersed in a fluid flow. The paper discusses the design criteria for the open jet wind tunnel that provides a maximum wind speed of 72 m/s at continuous operation and may be operated with nozzles of different dimension between 35 cm diameter (circular nozzle) and 12 cm by 14.7 cm (rectangular nozzle). Experiments may be performed either in a reverberant or in an anechoic environment. Both the aerodynamic and the acoustic design of the wind tunnel components are discussed in detail. Background noise measurements in the completed facility revealed very low levels comparable to other wind tunnels. The results of aerodynamic wind tunnel calibration confirmed a uniform flow quality in the jet and a very low axial turbulence intensity which is less than 0.2% for the 35 cm nozzle and less than 0.1% for the other nozzles. A final benchmark is provided by results of successful trailing edge noise measurements on an SD7003 airfoil that are presented and compared to results from the literature.  相似文献   

8.
The effect of the correlation function of noise sources derived from the ocean wave spectrum on the vertical spatial correlation of ocean ambient noise is investigated. The spatial correlation models of ocean ambient noise usually assume that the surface noise sources are uncorrelated. This assumption can be used to explain some physical phenomena, but it is not consistent with the real situation. Considering the relation between the ocean wave motion and the ambient noise generated by wind, the spectrum of ocean wave is introduced to calculate the vertical correlation of ocean ambient noise as the correlation function of noise sources by using the Kuperman-Ingenito(K/I) noise model. The comparison of the simulations and the experimental data shows that the simulations of vertical correlation of ambient noise have some differences with the experimental data by assuming the noise sources are uncorrelated and the simulations of vertical correlation of ambient noise have a good agreement with the experimental data by using the correlation function of noise sources derived from the ocean wave spectrum under the situation of high wind speed.  相似文献   

9.
徐东  李风华  郭永刚  王元 《声学学报》2018,43(2):137-144
提出了一种适用于深海低频环境噪声的波浪谱,通过声压谱和波浪谱的理论关系,分析了深海低频噪声在百赫兹以下的谱特征,解释了不同频段噪声谱的主要产生机理。将深海传播条件下海面波浪谱与海面风速相结合,利用波浪发声理论得到一种低频海洋环境噪声理论表示方法。仿真结果表明,波浪谱决定着辐射噪声谱的强度和斜率,本模型得到的理论噪声谱可以对低频海洋环境噪声进行预报。2016年的深海实验观测数据分析显示,统计的环境噪声谱级在1 Hz至100 Hz频段范围内大于70 dB,并且噪声谱在低频段呈倒“N”型,在34 Hz处为噪声谱的谷值,噪声级为70 dB,在50 Hz处为噪声谱的峰值,噪声级为92 dB,通过理论计算和实验对比,相关系数为0.95,理论结果和实验测量对比结果符合较好。   相似文献   

10.
The purpose of this paper is to optimize noise emission level associated with two types of speed reducers for different speeds of a vehicle (20, 40, 60 km/h) by Genetic Algorithm and Artificial Neural Network. The optimization shows that the maximum level of noise is sensitive to speed reducer dimensions. It is reduced by 24 dB(A) by changing the width from 0.6 m to 0.3 m for the height 0.04 m whereas, it is reduced by 32 dB(A) by changing from the height 0.055 m and the width 0.9 m to the height 0.04 m and the width 0.3 m.  相似文献   

11.
An ocean surface wave spectrum which is used for low frequency ambient noise in deep water is proposed. It explains the mechanism of low frequency ambient noise from the theoretical relation between the spectrum of sound pressure and wave. Combining the surface wave spectrum and local wind speed in deep water, a theoretical expression of low frequency ambient noise is obtained with wave generated noise theory. Simulation results show that the wave spectrum is crucial to the intensity and the spectral slope of radiated noise spectrum,and the theoretical noise spectrum could be used to predict the ambient noise in deep water.The predicting results axe verified through the experimental data recorded by an ocean bottom seismometer that was deployed on the floor of deep water in April 2016. It is observed that the statistical noise levels from the experimental data for frequencies from 1 Hz to 100 Hz are larger than 70 dB, and the low frequency ambient noise spectrum follows the shape of inverted"N",the valley of noise spectrum is at 3-4 Hz, and the noise intensity is 70 dB. The peak of noise spectrum is at 50 Hz, and the noise intensity is 92 dB. The correlation coefficient is 0.95 between the model spectrum and measured data.  相似文献   

12.
By investigating the effects on deep ocean ambient noise of typhoon "KAI-TAK" which passed the north area of the South China Sea,it is shown that the wind speed,the rainfall intensity and the long wave swell caused by typhoon affect the ocean ambient noise significantly.The correlation between the ocean ambient noise and the wind speed during the typhoon is much better than that in the non-typhoon period in the same Beaufort scale.Analysis of the correlation between the 415 h ocean ambient noise measured data and wind speed shows that,when the frequency is greater than 300 Hz,the correlation coefficient between the ocean ambient noise and the wind speed is greater than 0.5,achieving a moderate correlation;when the frequency is greater than 630 Hz,the correlation coefficient is between 0.8 and 0.9,achieving a high degree of correlation.The correlation between the ocean ambient noise and the wind speed is better than that between the ocean ambient noise and the significant wave height when the frequency is greater than 300 Hz.The correlation between the ocean ambient noise and the wind speed in infrasonic band from 10 Hz to 20 Hz is poor in the South China Sea,because the shipping is busy in this sea area and the ocean ambient noise is contaminated by the ship noise even during the typhoon.  相似文献   

13.
This paper presents mathematical logarithmic, statistical linear regression, and neural models capable of predicting maximum A-weighed noise level (LA,max) for the Tehran-Karaj express train. The models have been developed upon the basis of the measurements from sampling locations at distances of 25 m, 45 m, and 65 m from the centreline of the track and at a height of 1.5 m. In the next step, the predictive capability of the models have been tested on the data associated with the sampling locations, situated, respectively at distances of 35 and 55 m from the centreline of the track at a height of 1.5 m. The non-parametric tests i.e. two-related samples Wilcoxon, and two-independent samples Kolmogorov-Smirnov, carried out, respectively for training and testing steps, indicate satisfactory results. In the final step the non-parametric k-related samples Friedman test detects no significant differences amongst the absolute testing set error of the models.  相似文献   

14.
基于简正波理论,结合风成海面噪声传播模型和风成噪声源级模型,推导出台风激发水下噪声场强度的计算公式,建立水下噪声强度与海表面风速的函数关系,并给出模型中相关参数的求解方法。应用这一关系,由台风经过时的水下噪声实测数据,反演得到对应时刻的海表面风速值,并将反演结果与气象台给出的台风风速预报值进行对比。   相似文献   

15.
The instrument forward model of the modified super-wide-Sagnac imaging interferometer based on liquid crystals on Silicon (MSASII-LCoS) is developed as an integrated code package with Matlab language to simulate the images of satellite observations. There are five sub-models in the forward model including radiation model of O(1S), orbit attitude, filter, interferometer and array detector. The principle of each sub-model is described separately and then the overall forward model equation is derived. The four simulation images are obtained. Based on the integrated signal level for the daytime observations, the apparent measurement error of wind is less than 3 m/s and the signal noise ratio (SNR) is greater than 194 with a binning of 2 × 25 pixels at the tangent height range of 70-190 km.  相似文献   

16.
针对舰船在海上航行时形成的尾迹包含多类信息,利用Kelvin尾迹模型得到舰船速度为5 m/s、10 m/s和15 m/s的尾迹最大波高分别为0.5 m、1.5 m和2.5 m。通过海浪Pierson Moscowitz谱模型描述海面风速分别为5 m/s、8 m/s和10 m/s下的复杂海面背景模型。基于海面背景和尾迹区域的几何差异,建立了Kelvin尾迹的红外发射模型,得到不同海面风速、不同舰船航速和不同探测天顶角下的红外特征仿真图像。仿真结果表明,红外图像的灰度极大值位于尾迹波峰处,海面风速由5 m/s增加到10 m/s时,尾迹区域与海面背景平均灰度差值由100逐渐减小,直至无差异。相同海面风速下,舰船速度由5 m/s增加到15 m/s,尾迹波长由10 m增加到40 m,红外特征明显。改变探测器天顶角分别为0和30时,红外图像差异较小,当天顶角增大到60时,尾迹区域灰度值接近海面背景,差值小于30,尾迹的辨识难度增加。  相似文献   

17.
The CO2 laser-based lidar ATLAS has been used to study the Stromboli volcano plume. ATLAS measured water vapor concentration in cross-sections of the plume and wind speed at the crater. Water vapor concentration and wind speed were retrieved by differential absorption lidar and correlation technique, respectively. Lidar returns were obtained up to a range of 3 km. The spatial resolution was 15 m and the temporal resolution was 20 s. By combining these measurements, the water vapor flux in the Stromboli volcano plume was found. To our knowledge, it is the first time that lidar retrieves water vapor concentrations in a volcanic plume.  相似文献   

18.
Experiments have been performed on the roughness noise produced by a two-dimensional turbulent wall jet boundary layer flowing over short fetches of sandpaper roughness. A range of rough surface sizes were studied from hydrodynamically smooth through fully rough. Velocity measurements were made to document the form of the wall jet boundary layer and the influence of the roughness upon it. Acoustic measurements showed background noise levels to be very low so that the sound produced by the rough surfaces could be clearly detected with signal to noise ratios as large as 20 dB. Even hydrodynamically smooth roughness was found to produce noise, conclusively indicating the presence of scattering as a source mechanism. Variations of the roughness noise spectra with flow speed and roughness size are found to be inconsistent with any simple parameter scaling. Boundary layer wall pressure fluctuation measurements made within the roughness fetches reveal a spectral form quite different than the roughness noise, and fluctuation levels some 50-70 dB higher. Despite these differences the wall pressure and roughness noise are found to be very simply related, at least at lower frequencies (<6 kHz). The roughness noise spectrum varies closely as the product of the wall pressure spectrum, the frequency squared, and the mean-square roughness height. This is the scaling predicted by scattering theory and implies a major simplification to the problem of roughness noise prediction for stochastic surfaces.  相似文献   

19.
Design and performance of a small-scale aeroacoustic wind tunnel   总被引:3,自引:0,他引:3  
The D5 aeroacoustic wind tunnel at Beihang University is a newly commissioned small-scale closed-circuit wind tunnel with low turbulence intensity and low background noise. The wind tunnel is built to study both aerodynamic and aeroacoustic performance of aircraft components or scaled models. The wind tunnel has two types of test sections, the closed type test section is used for aerodynamic tests while the open type test section is mainly used for aeroacoustic experiments. Both types of test section are 1 m in height and 1 m in width, and the maximum wind velocity in the test section can be up to 80 m/s. An anechoic chamber is built surrounding the test section to provide the non-reflecting condition. This paper provides an overview of design criteria and performance of the small-scale wind tunnel. The layout of the wind tunnel and some critical design treatments to improve aerodynamic and acoustic performance are discussed in detail. Some experiments are conducted to verify the performance of D5 wind tunnel, results confirm that the turbulence intensity is less than 0.08% in the core of test section and the background noise is comparable with other aeroacoustic wind tunnels. A scaled simplified nose landing gear model is also measured as a benchmark test, results reveal that noise radiated from the model is adequately higher than the background noise for a wide frequency range and remarkably consistent with other results from literatures.  相似文献   

20.
A rail noise prediction model for the Tehran-Karaj commuter train   总被引:1,自引:0,他引:1  
Rail noise prediction models enable consideration of different scenarios for the optimal management of noise prevention and mitigation. This project is aimed at developing an equation that enables computation of LA,max for the Tehran-Karaj commuter train, a type of Diesel-Electric Locomotive. The form of the proposed model is derived from equations for predicting LA,max for a single locomotive pass-by, proposed in the manual prepared by Harris Miller Miller & Hanson Inc. for the US Federal Transit Administration, and in the French rail noise prediction model. The algorithm for predicting LA,max for the Tehran-Karaj commuter train has been developed on the basis of the 50 measurements from 5 locations at distances of 25 m, 35 m, 45 m, 55 m, and 65 m from the centre of the track and at a height of 1.5 m. In the field measurements, the reference distance and the reference vehicle speed have respectively been set equal to 25 m and 80 km per hour. The reference LA,max, length and the speed correction coefficients have been estimated from the field measurements and have been found to be 86.2 dB(A), 11.3, and 18.4 respectively. The fitness test (Kolmogorov-Smirnov) and regression analysis indicate satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号