首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
 Laser Doppler velocimetry (LDV) measurements are presented of three-dimensional flow fields in lateral model aneurysms arising from a straight parent vessel at a 90° angle. The flow considered was pulsatile and the aneurysm wall was rigid. The mean, peak, and minimal Reynolds numbers based on the bulk average velocity and diameter of the parent vessel were 550, 790, and 375, respectively. Comparisons among present in vitro studies, previous in vitro studies, computational simulations, and in vivo studies were made. It was found that the inflow angle into the lateral aneurysm, the maximum wall shear stress acting on the distal lip of the lateral aneurysm, and the intra-aneurysmal vortical motion increased with decreasing aneurysm size. This fact together with the impingement bifurcation of the inflow at the aneurysm dome provide possible hemodynamic factors for the rupture of the lateral aneurysm at small critical size. Received: 15 March 1996/Accepted: 13 March 1997  相似文献   

2.
 Pulsatile and steady flowfields in a lateral aneurysm model arising from the parent vessel with radius of curvature to vessel diameter ratios of 2.5, 5, and ∞ are presented in terms of particle tracking velocimetry (PTV) measurements and flow visualization. The steady-flow case has a Reynolds number of 600 and the pulsatile-flow one has a Womersley number of 3.9 and Reynolds number of 600. It is found that there exist two opposite vortices and a single vortex in the aneurysms arising from a straight and a curved parent vessel, respectively. The intra-aneurysmal flow velocity, vorticity, and wall shear stresses increase with increasing curvature of the parent vessel. It is suggested from the present results that the lateral aneurysm arising from a straight or small-curvature parent vessel has a tendency to thrombosis whereas the lateral aneurysm arising from a large-curvature parent vessel is more risky. Received: 14 August 1996/Accepted: 17 January 1997  相似文献   

3.
A mathematical model for blood flow through an elastic artery with multistenosis under the effect of a magnetic field in a porous medium is presented. The considered arterial segment is simulated by an anisotropically elastic cylindrical tube filled with a viscous incompressible electrically conducting fluid representing blood. An artery with mild local narrowing in its lumen forming a stenosis is analyzed. The effects of arterial wall parameters represent viscoelastic stresses along the longitudinal and circumferential directions T t and T θ , respectively. The degree of anisotropy of the vessel wall γ, total mass of the vessel, and surrounding tissues M and contributions of the viscous and elastic constraints to the total tethering C and K respectively on resistance impedance, wall shear stress distribution, and radial and axial velocities are illustrated. Also, the effects of the stenosis shape m, the constant of permeability X, the Hartmann number H α and the maximum height of the stenosis size δ on the fluid flow characteristics are investigated. The results show that the flow is appreciably influenced by surrounding connective tissues of the arterial wall motion, and the degree of anisotropy of the vessel wall plays an important role in determining the material of the artery. Further, the wall shear stress distribution increases with increasing T t and γ while decreases with increasing T θ , M, C, and K. Transmission of the wall shear stress distribution and resistance impedance at the wall surface through a tethered tube are substantially lower than those through a free tube, while the shearing stress distribution at the stenosis throat has inverse characteristic through totally tethered and free tubes. The trapping bolus increases in size toward the line center of the tube as the permeability constant X increases and decreases with the Hartmann number Ha increased. Finally, the trapping bolus appears, gradually in the case of non-symmetric stenosis, and disappears in the case of symmetric stenosis. The size of trapped bolus for the stream lines in a free isotropic tube (i.e., a tube initially unstressed) is smaller than those in a tethered tube.  相似文献   

4.
A three-dimensional separated flow behind a swept, backward-facing step is investigated by means of DNS for Re H = C H/ν = 3000 with the purpose to identify changes in the statistical turbulence structure due to a variation of the sweep angle α from 0° up to 60°. With increasing sweep angle, the near-wall turbulence structure inside the separation bubble and downstream of reattachment changes due to the presence of an edge-parallel mean flow component W. Turbulence production due to the spanwise shear ∂W/∂y at the wall becomes significant and competes with the processes caused by impingement of the separated shear-layer. Changes due to a sweep angle variation can be interpreted in terms of two competing velocity scales which control the global budget of turbulent kinetic energy: the step-normal component U = C cosα throughout the separated flow region and the velocity difference C across the entire shear-layer downstream of reattachment. As a consequence, the significance of history effects for the development into a two-dimensional boundary layer decreases with increasing sweep angle. For α ≥50°, near-wall streaks tend to form inside the separated flow region. Received 7 November 2000 and accepted 9 July 2002 Published online 3 December 2002 RID="*" ID="*" Part of this work was funded by the Deutsche Forschungsgemeinschaft within Sfb 557. Computer time was provided by the Konrad-Zuse Zentrum (ZIB), Berlin. Communicated by R.D. Moser  相似文献   

5.
To discuss the validity of the hemodynamic hypothesis of aneurysm rupture, we used a patient-specific, realistic aneurysm model to reveal the flow structure and wall shear stress distribution in two cases: one with an unruptured aneurysm and the other with a ruptured aneurysm. We used particle imaging velocimetry and laser Doppler velocimetry to measure velocity profiles of intra-aneurysmal flow. Both cases had a circulating flow along the aneurysm wall, although the second case had a recirculating zone only in the minimum phase. Differences in the wall shear stress profile may identify aneurysm rupture.  相似文献   

6.
Measurements and scaling of wall shear stress fluctuations   总被引:2,自引:0,他引:2  
Measurements of velocity and wall shear stress fluctuations were made in an external turbulent boundary layer developed over a towed surface-piercing flat plate. An array of eight flush-mounted wall shear stress sensors was used to compute the space-time correlation function. A methodology for in situ calibration of the sensors for ship hydrodynamic applications is presented. The intensity of the wall shear stress fluctuations, τ rms/τ avg was measured as 0.25 and 0.36 for R θ =3,150 and 2,160 respectively. The probability density is shown to exhibit positive skewness, and lack of flow reversals at the wall. Correlations between velocity and wall shear stress fluctuations are shown to collapse with outer boundary layer length and velocity scales, verifying the existence of large-scale coherent structures which convect and decay along the wall at an angle of inclination varying from 10 to 13° over the range of Reynolds numbers investigated. The wall shear stress convection velocity determined from narrow band correlation measurements is shown to scale with outer variables. The space-time correlation of the wall shear is shown to exhibit a well-defined convective ridge, and to decay 80% over approximately for R θ =3,150. Published online: 7 November 2002  相似文献   

7.
The flow of an incompressible couple stress fluid in an annulus with local constriction at the outer wall is considered. This configuration is intended as a simple model for studying blood flow in a stenosed artery when a catheter is inserted into it. The effects couple stress fluid parameters α and σ, height of the constriction (ε), and ratio of radii (k) on the impedance and wall shear stresses are studied graphically. Graphical results show that the resistance to the flow as well as the wall shear stress increases as the ratio of the radii increases and decreases as the couple stress fluid parameters increases.  相似文献   

8.
Blood flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, in addition the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. The present numerical investigation describes the hemodynamics in two models of terminal aneurysm of the basilar artery. Aneurysm models with an aspect ratio of 1.0 and 1.67 were studied. Each model was subject to a steady, sinusoidal and physiologically representative waveform of inflow for a mean Reynolds number of 560. Symmetric and asymmetric outflow conditions in the branches were also studied.

The three-dimensional continuity and the Navier-Stokes equations for incompressible, unsteady laminar flow with Newtonian properties were solved with a commercial software using non structured grids with 61334 and 65961 cells for models 1 and 2, respectively. The grids were primarily composed of tetrahedral elements.

The intra-aneurysmal flow was unsteady for all input conditions and in both models, the flow always showed a complex vortex structure. The inflow and outflow zones in the aneurysm neck were determined. The wall shear stress on the aneurysm showed large temporal and spatial variations. The asymmetric outflow increased the wall shear stress in both models.  相似文献   

9.
 Turbulence measurements are reported on the three-dimensional turbulent boundary layer along the centerline of the flat endwall in a 30° bend. Profiles of mean velocities and Reynolds stresses were obtained down to y +≈2 for the mean flow and y +≈8 for the turbulent stresses. Mean velocity data collapsed well on a simple law-of-the-wall based on the magnitude of the resultant velocity. The turbulence intensity and turbulent shear stress magnitude both increased with increased three-dimensionality. The ratio of these two quantities, the a 1 structure parameter, decreased in the central regions of the boundary layer and showed profile similarity for y +<50. The shear stress vector angle lagged behind the velocity gradient vector angle in the outer region of the boundary layer, however there was an indication that the shear stress vector tends to lead the velocity gradient vector close to the wall. Received: 16 July 1996/Accepted: 14 July 1997  相似文献   

10.
 The time-dependent transformation of an ionically charged lamellar phase (L α-phase) into a vesicle phase under the influence of shear is investigated using rheological and conductivity measurements. The L α-phase consists of the zwitterionic surfactant tetradecyldimethylaminoxide (C14DMAO), hexanol, oxalic acid and water. The experiments were carried out on the L α-phase in a well defined state. It was prepared by a special route from the neighbouring L 3-phase that consists of 100 mM C14DMAO, 250 mM hexanol and 5 mM oxalicdiethylester (OEE). The OEE hydrolyses in the L 3 -phase to oxalic acid and ethanol. The result is a virgin L α-phase which consists of stacked bilayers and which has not been exposed to shear. When this low-viscous phase is subjected to shear it is transformed into a highly viscous vesicle phase. The transformation of the L α-phase into vesicles under constant shear was monitored by recording the viscosity and conductivity with time. It is observed that at least three different time constants can be distinguished in the transformation process. The conductivity passes through a minimum (τ1) in the direction of shear. The viscosity first passes through a minimum (τ2) and then over a maximum (τ3). It is concluded that τ1 belongs to the complete alignment of the bilayer parallel to the wall, τ2 to the beginning of the break-up of the bilayers to the vesicles and τ3 to the complete transformation of the L α- to the vesicle phase. When the shear rate was varied, it was noted that the product of the time constants and shear is constant. Received: 30 June 1999/Accepted: 30 August 1999  相似文献   

11.
An experimental study of a two-dimensional plane turbulent wall jet   总被引:1,自引:0,他引:1  
 Laser-Doppler measurements were conducted in a plane turbulent wall jet at a Reynolds number based on inlet velocity, Re 0, of 9600. The initial development as well as the fully developed flow was studied. Special attention was given to the near-wall region, including the use of small measuring volumes and the application of specific near-wall data corrections, so that wall shear stresses were determined directly from the mean velocity gradient at the wall using only data below y +=4. It was possible to resolve the inner peak in the streamwise turbulence intensity as well as the inner (negative) peak in the shear stress. Limiting values of (u′)+ and uv + were determined. Turbulence data from the outer region of the flow were compared to earlier hot wire measurements and large differences in the normal turbulence intensity and the shear stress were found. These differences can be attributed to high turbulence intensity effects on the hot-wires. Received: 17 October 1996 / Accepted: 8 December 1997  相似文献   

12.
We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e n and v n , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ 0 ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.  相似文献   

13.
Experiments are carried out in the wake of a cylinder of d c  = 10 mm diameter placed symmetrically between two parallel walls with a blockage ratio r = 1/3 and a Reynolds number varying between 75 ≤ Re ≤ 277. Particle image velocimetry is exerted to obtain the instantaneous velocity components in the cylinder wake. A snapshot proper orthogonal decomposition (POD) is also applied to these PIV results in order to extract the dominant modes through the implementation of an inhomogeneous filtering of these different snapshots, apart from an interpolation to estimate the wall shear rate at the lower wall downstream the cylinder. Mass transfer circular probes are placed at the lower wall downstream this obstacle so as to further determine the time evolution of the wall shear rate, by bringing the inverse method to bear on the convective-diffusion equation. Comparisons between the two synchronized techniques demonstrate that electrochemical method can give more accurate information about the coherent structures present in the flow and about the interaction of the von Kármán vortices with the walls of the tunnel as well. The comparison between the two measurement techniques in the flow regions concerns the spatiotemporal evolutions of the wall shear rate obtained from PIV measurements and the wall shear rate using mass transfer probes. Discrepancy between the PIV measurements and the electrochemical ones near the wall, where the secondary vortices P 1′ are generated at wall, are caused by a PIV bias and a limitations of the singular mass transfer probes.  相似文献   

14.
 Hot-wire measurements have been carried out in the turbulent flow around a rotating circular cylinder in still air for Reynolds numbers Re=∣U w D/ν=1.5×104 to 105. The experimental results confirm the analysis derived by asymptotic theory for high Reynolds numbers. Two different ways of deriving the friction law from the experiments (via shear stress and via velocity distribution) resulted practically in the same law. It is shown, that in spite of the curvature of the streamlines the universal logarithmic velocity distribution is still valid near the wall. Received: 8 August 1996/Accepted: 24 April 1998  相似文献   

15.
We describe how outer flow turbulence phenomena depend on the interaction with the wall. We investigate coherent structures in turbulent flows over different wavy surfaces and specify the influence of the different surface geometries on the coherent structures. The most important contribution to the turbulent momentum transport is attributed to these structures, therefore this flow configuration is of large engineering interest. In order to achieve a homogeneous and inhomogeneous reference flow situation two different types of surface geometries are considered: (1) three sinusoidal bottom wall profiles with different amplitude-to-wavelength ratios of α = 2a/Λ = 0.2 (Λ = 30 mm), α = 0.2 (Λ = 15 mm), and α = 0.1 (Λ = 30 mm); and (2) a profile consisting of two superimposed sinusoidal waves with α = 0.1 (Λ = 30 mm). Measurements are carried out in a wide water channel facility (aspect ratio 12:1). Digital particle image velocimetry (PIV) is performed to examine the spatial variation of the streamwise, spanwise and wall-normal velocity components in three measurement planes. Measurements are performed at a Reynolds number of 11,200, defined with the half channel height h and the bulk velocity U B. We apply the method of snapshots and perform a proper orthogonal decomposition (POD) of the streamwise, spanwise, and wall-normal velocity components to extract the most dominant flow structures. The structure of the most dominant eigenmode is related to counter-rotating, streamwise-oriented vortices. A qualitative comparison of the eigenfunctions for different sinusoidal wall profiles shows similar structures and comparable characteristic spanwise scales Λ z = 1.5 H in the spanwise direction for each mode. The scale is observed to be slightly smaller for α = 0.2 (Λ = 15 mm) and slightly larger for α = 0.2 (Λ = 30 mm). This scaling for the flow over the basic wave geometries indicates that the size of the largest structures is neither directly linked to the solid wave amplitude, nor to the wavelength. The characteristic spanwise scale of the dominant eigenmode for the developed flow over the surface consisting of two superimposed waves reduces to 0.85 H. However, a scale in the order of 1.3 H is identified for the second mode. The eigenvalue spectra for the superimposed waves is much broader, more modes contribute to the energy-containing range. The turbulent flow with increased complexity of the bottom surface is characterized by an increased number of dominant large-scale structures with different spanwise scales.  相似文献   

16.
Conclusions Results from the present study show that the skin-friction coefficient decreases as the Reynolds number,Re h , increases in the following manner, C f ,min=−0.19Re h −1/2. The -1/2 power relationship deduced from the correlationC f,min vs.Re h indicates laminar like behavior which is consistent with the findings of Adams et al. (1984). Clauser's method, which is frequently used for the determination of the wall shear stress, leads to erroneous results when applied to the velocity measurements obtained in the near field of reattaching flows (and many other wall-bounded nonequilibrium flows). Direct measurements of theC f using the LOI technique give higher values than those obtained by the classical techniques. The normalized mean velocity on the wall coordinates violates the universal law-of-the-wall in the near field of reattaching flows. Research support for the first author was provided by NASA Grant NCC2-465, and is gratefully acknowledged.  相似文献   

17.
In the present article, we have analyzed the effects of heat and mass transfer on Reiner Rivlin fluid model for blood flow through a tapered artery with a stenosis. The constitutive equations for a Reiner Rivlin fluid have been modelled in cylindrical coordinates. A perturbation series in dimensionless Reiner Rivlin fluid parameter (λ 1 ≪ 1) have been used to obtain explicit forms for the velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries i.e. converging tapering, diverging tapering, non-tapered artery have been examined for different parameters of interest.  相似文献   

18.
The mean value theorem of integral calculus guarantees that the apparent viscosity η a can easily be converted into the correct viscosity η. For ordinary liquids there is a direct identity between η a and η but the apparent shear rate (or apparent shear stress) has to be shifted to the representative shear rate γ˙^ (or representative shear stress τ^). A model free approximation scheme is introduced which implies a constant shift factor. The corresponding approximation for η is acceptable for liquids most commonly encountered. For plastic fluids the relation between η and η a is more complex since it involves a function depending upon α; the yield stress relative to the maximum stress within the viscometer. Using the same approximation scheme as before the shift factor will involve α as well. The corresponding approximation of η is shown to be acceptable for the whole range of α. Received: 7 February 2000/Accepted: 15 February 2000  相似文献   

19.
In this paper we investigate a subgrid model based on an anisotropic version of the NS-α model using a lid-driven cavity flow at a Reynolds number of 10,000. Previously the NS-α model has only been used numerically in the isotropic form. The subgrid model is developed from the Eulerian-averaged anisotropic equations (Holm, Physica D 133:215, 1999). It was found that when α 2 was based on the mesh numerical oscillations developed which manifested themselves in the appearance of streamwise vortices and a ‘mixing out’ of the velocity profile. This is analogous to the Craik–Leibovich mechanism, with the difference being that the oscillations here are not physical but numerical. The problem could be traced back to the discontinuity in α 2 encountered when α 2 = 0 on the endwalls. A definition of α 2 based on velocity gradients, rather than mesh spacing, is proposed and tested. Using this definition the results with the model show a significant improvement. The splitting of the downstream wall jet, rms and shear stress profiles are correctly captured a coarse mesh. The model is shown to predict both positive and negative energy transfer in the jet impingement region, in qualitative agreement with DNS results.  相似文献   

20.
In this experimental work, we investigate the influence of an organic counterion, sodium tosylate, on the rheological properties of an aqueous solution of CTAB at the concentration of 0.05M. With this system we can clearly see shear thickening for small salt concentrations C s and only shear thinning behavior at higher C s characterized by a linear evolution of η=f(γ) in a log-log representation. In these evolutions it is only in a very small domain of concentrations of the salt (near C s =0.035M) that we can observe a nearly constant plateau of the shear stress against shear rate. The values of σ0 (characterizing the stress plateau), G 0 (the plateau modulus) and τR (the relaxation time) obtained by dynamical rheological measurements, allow to compare experimental results obtained to predicted values of the theory of Cates corresponding to the occurrence of shear induced banding structures. Received: 22 July 1997 Accepted: 3 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号