首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Second‐order rate constants (k2) were determined for the addition of ten nitrogenous organic compounds (benzylamine, 2,2,2‐trifluoethylamine chlorhidrate, methylamine chlorhidrate, glycine ethyl ester chlorhidrate, glycine, glycylglycine chlorhidrate, morpholine, pyperidine, pyperazine and dimethylamine) to the N‐chloro‐N‐methyl‐p‐toluenesulfonamide (NCNMPT) in the formation reaction of N‐chloramines in aqueous solution at 25 °C and ionic strength 0.5 M. The series of nucleophiles considered is structurally very varied and covers five pKa units. The kinetic behaviour is similar for all compounds, being the elementary step the transfer of chlorine from the NCNMPT molecule to the nitrogen of the free amino group. These reactions were found first order in both reagents. The values of the rate constants indicate that the more basic amines produce N‐chloramines more readily. Rate constants for the nucleophilic attack are shown to correlate with literature data for some of these nitrogenous organic compounds in their reaction with N‐methyl‐N‐nitroso‐p‐toluenesulfonamide. Both reactions involve that the rate determining step is the attack of nitrogenous compounds upon electrophilic centre (Cl or else NO group). NCNMPT is a particularly interesting substrate, for which has not hitherto been published kinetic information, that allows us to assess the efficiency and the competitiveness of this reaction and compare it with other agents with a Cl+ atom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The chlorination reactions of nitrogenous organic compounds (2,2,2‐trifluoroethylamine, benzylamine, glycine, and dimethylamine) by tert‐butyl hypochlorite (tBuOCl) were studied at 25 °C, ionic strength 0.5 M and under isolation conditions. The kinetic results obtained in the formation processes of the corresponding N‐chloramines in acid medium (pH = 5–7) are summarized in this paper. Kinetic studies showed a first order with respect to tBuOCl concentration. The chlorination reactions involving benzylamine, glycine and dimethylamine were all first order with respect to nitrogenous compound concentration and approximately ?1 order with respect to proton concentration. The reaction with 2,2,2‐trifluoroethylamine was more complex, and the order of reaction with respect to the amine varied with pH. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The gas‐phase elimination kinetics of the title compounds were carried out in a static reaction system and seasoned with allyl bromide. The working temperature and pressure ranges were 200–280 °C and 22–201.5 Torr, respectively. The reactions are homogeneous, unimolecular, and follow a first‐order rate law. These substrates produce isobutene and corresponding carbamic acid in the rate‐determining step. The unstable carbamic acid intermediate rapidly decarboxylates through a four‐membered cyclic transition state (TS) to give the corresponding organic nitrogen compound. The temperature dependence of the rate coefficients is expressed by the following Arrhenius equations: for tert‐butyl carbamate logk1 (s?1) = (13.02 ± 0.46) – (161.6 ± 4.7) kJ/mol(2.303 RT)?1, for tert‐butyl N‐hydroxycarbamate logk1 (s?1) = (12.52 ± 0.11) – (147.8 ± 1.1) kJ/mol(2.303 RT)?1, and for 1‐(tert‐butoxycarbonyl)‐imidazole logk1 (s?1) = (11.63 ± 0.21)–(134.9 ± 2.0) kJ/mol(2.303 RT)?1. Theoretical studies of these elimination were performed at Møller–Plesset MP2/6‐31G and DFT B3LYP/6‐31G(d), B3LYP/6‐31G(d,p) levels of theory. The calculated bond orders, NBO charges, and synchronicity (Sy) indicate that these reactions are concerted, slightly asynchronous, and proceed through a six‐membered cyclic TS type. Results for estimated kinetic and thermodynamic parameters are discussed in terms of the proposed reaction mechanism and TS structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Second‐order rate constants were determined for the chlorination reaction of 2,2,2‐trifluoethylamine and benzylamine with N‐chlorosuccinimide at 25 °C and an ionic strength of 0.5 M. These reactions were found to be of first order in both reagents. According to the experimental results, a mechanism reaction was proposed in which a chlorine atom is transferred between both nitrogenous compounds. Kinetics studies demonstrate that the hydrolysis process of the chlorinating agent does not interfere in the chlorination process, under the experimental conditions used in the present work. Free‐energy relationships were established using the results obtained in the present work and others available in the literature for chlorination reactions with N‐chlorosuccinimide, being the pKa range included between 5.7 and 11.22. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The chlorination reactions of 2‐oxazolidinone with hypochlorous acid (HOCl), tert‐butyl hypochlorite (tBuOCl) and N‐chlorosuccinimide (NCS) were studied at 25 °C, constant ionic strength, and under isolation conditions. The kinetic results obtained in the formation processes of the N‐chloro‐2‐oxazolidinone are summarized in this paper. The kinetics studied showed a first order with respect to the concentration of the each reactant and a complex dependence of the pH on the rate constant. The reactivity order with respect to the chlorinating agent found is k(HOCl) > k(tBuOCl) > k(NCS). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The hydrolysis of 2‐chloro‐3,5‐dinitropyridine by sodium hydroxide in the presence of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl) and sodium dodecyl sulfate (SDS) has been studied. The reaction follows a consecutive reaction path involving the formation of a long‐lived intermediate 3 and finally giving the product, 3,5‐dinitro 2‐pyridone 2 . The mechanism follows an addition of the nucleophile, ring opening and ring closure (ANRORC) reaction path. The rate constant was observed to be first‐order dependent on [OH?]. The rate of reaction increased on increasing [CTABr] and, after reaching to the maxima, it started decreasing. The anionic SDS micelles inhibited the rate of hydrolysis. The results of the kinetic experiments were treated with the help of the pseudophase ion exchange model and the Menger–Portnoy model. The added salts, viz. NaBr, Na‐toluene‐4‐sulphonate, and (CH3)4NBr on varying [CTACl] and [SDS] inhibited the rate of reaction. The various kinetic parameters in the presence and absence of salts were determined and are reported herewith. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
4,4‐Dimethyl‐1‐(trifluoromethylsulfonyl)‐1,4‐azasilinane 1 and 2,2,6,6‐tetramethyl‐4‐(trifluoromethylsulfonyl)‐1,4,2,6‐oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Møller‐Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed ‘inward’ and ‘outward’ the ring, the latter being 0.2–0.4 kcal/mol (for 1 ) and 1.1 kcal/mol (for 2 ) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference ΔGo for the ‘inward’ ‘outward’ equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X‐ray diffraction analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The conformational behaviors of trans‐2,3‐dihalo‐1,4‐dithiane [halo = F ( 1 ), Cl ( 2 ), Br ( 3 )] and trans‐2,5‐dihalo‐1,4‐dithiane [halo = F ( 4 ), Cl ( 5 ), Br ( 6 )] have been analyzed by means of complete basis set CBS‐4, hybrid‐density functional theory (B3LYP/6‐311 + G**//B3LYP/6‐311 + G**) based methods, and natural bond orbital (NBO) interpretation. Both methods showed that the axial conformations of compounds 1–5 are more stable than their equatorial conformations but CBS‐4 resulted in an equatorial preference for compound 6 . The Gibbs free energy difference (Geq?Gax) values (i.e., ΔGeq–ax) at 298.15 K and 1 atm between the axial and equatorial conformations decrease from compound 1 to compound 2 but increase from compound 2 to compound 3 . Also, the calculated ΔGeq–ax values decrease from compound 4 to compound 6 . The NBO analysis of donor–acceptor (LP → σ*) interactions showed that the anomeric effect (AE) increase from compound 1 to compound 3 and also from compound 4 to compound 6 . On the other hand, the calculated dipole moment values between the axial and equatorial conformations [Δ(µeq?µax)] decrease from compound 1 to compound 3 . The conflict between the increase of AE and the decrease of Δ(µeq?µax) values could explain the variation of the calculated ΔGeq–ax for compounds 1–3 . The Gibbs free energy difference values between the axial and equatorial conformations (i.e., ΔGax–ax and ΔGeq–eq) of compounds 1 and 4 , 2 and 5 and also 3 and 6 have been calculated. The correlations between the AE, bond orders, pairwise steric exchange energies (PSEE), ΔGeq–ax, ΔGax–ax, ΔGeq–eq, dipole–dipole interactions, structural parameters, and conformational behaviors of compounds 1–6 have been investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The aromatic nucleophilic substitution reaction of 3,6‐dichloro‐1,2,4,5‐tetrazine (DCT) with a series of biothiols RSH: (cysteine, homocysteine, cysteinyl–glycine, N‐acetylcysteine, and glutathione) is subjected to a kinetic investigation. The reactions are studied by following spectrophotometrically the disappearance of DCT at 370 nm. In the case of an excess of N‐acetylcysteine and glutathione, clean pseudo first‐order rate constants (kobs1) are found. However, for cysteine, homocysteine and cysteinyl–glycine, two consecutive reactions are observed. The first one is the nucleophilic aromatic substitution of the chlorine by the sulfhydryl group of these biothiols (RSH) and the second one is the intramolecular and intermolecular nucleophilic aromatic substitutions of their alkylthio with the amine group of RSH to give the di‐substituted compound. Therefore, in these cases, two pseudo first‐order rate constants (kobs1 and kobs2, respectively) are found under biothiol excess. Plots of kobs1 versus free thiol concentration at constant pH are linear, with the slope (kN) independent of pH (from 6.8 to 7.4). The kinetic data analysis (Brønsted‐type plot and activation parameters) is consistent with an addition–elimination mechanism with the nucleophilic attack as the rate‐determining step. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A systematic series of ortho‐methyl‐ and nitro‐substituted arylhydrazones 2–6 formed by Japp–Klingemann reaction between pentane‐2,4‐dione and the respective aryldiazonium salts have been synthesized and studied by X‐ray crystal structure analysis, with added quantum chemical calculations. The optimized molecular geometries based on DFT calculations, enabling determination of relevant rotational barriers, and the calculated bond and ring critical points, using the method of ‘atoms in molecules’, were found to correspond with the experimental data, involving specific molecular conformations and hydrogen‐bonded ring structure dependent on the ortho‐substitution, thus making possible reliable structural prediction of this compound class. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least‐square (PLS) regression was tested for its capability to deconvolute Cd L3‐edge X‐ray absorption near‐edge structure (XANES) spectra of multi‐compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R2) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi‐compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd‐contaminated soil revealing Cd3(PO4)2 (36.1%), Cd(NO3)2·4H2O (24.5%), Cd(OH)2 (21.7%), CdCO3 (17.1%) and CdCl2 (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.  相似文献   

12.
Theoretical calculation of the kinetics and mechanisms of gas‐phase elimination of 2‐hydroxyphenethyl chloride and 2‐methoxyphenethyl chloride has been carried out at the MP2/6‐31G(d,p), B3LYP/6‐31G(d,p), B3LYP/6‐31 + G(d,p), B3PW91/6‐31G(d,p) and CCSD(T) levels of the theory. The two substrates undergo parallel elimination reactions. The first process of elimination appears to proceed through a three‐membered cyclic transition state by the anchimeric assistance of the aromatic ring to produce the corresponding styrene product and HCl. The second process of elimination occurs through a five‐membered cyclic transition state by participation of the oxygen of o‐OH or the o‐OCH3 to yield in both cases benzohydrofuran. The B3PW91/6‐31G(d,p) method was found to be in good agreement with the experimental kinetic and thermodynamic parameters for both substrates in the two reaction channels. However, some differences in the performance of the different methods are observed. NBO analysis of the pyrolysis of both phenethyl chlorides implies a C? Cl bond polarization, in the sense of Cδ+…Clδ?, which is a rate‐determining step for both parallel reactions. Synchronicity parameters imply polar transition states of these elimination reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The gas‐phase elimination kinetics of tetrahydropyranyl phenoxy ethers: 2‐phenoxytetrahydro‐2H‐pyran, 2‐(4‐methoxyphenoxy)tetrahydro‐2H‐pyran, and 2‐(4‐tert‐butylphenoxy)tetrahydro‐2H‐pyran were determined in a static system, with the vessels deactivated with allyl bromide, and in the presence of the free radical inhibitor toluene. The working temperature and pressure were 330 to 390°C and 25 to 89 Torr, respectively. The reactions yielded DHP and the corresponding 4‐substituted phenol. The eliminations are homogeneous, unimolecular, and satisfy a first‐order rate law. The Arrhenius equations for decompositions were found as follows:
  • 2‐phenoxytetrahydro‐2H‐pyran
  • log k1 (s?1) = (14.18 ± 0.21) ? (211.6 ± 0.4) kJ mol?1 (2.303 RT)?1
  • 2‐(4‐methoxyphenoxy)tetrahydro‐2H‐pyran
  • log k1 (s?1) = (14.11 ± 0.18) ? (203.6 ± 0.3) kJ mol?1 (2.303 RT)?1
  • 2‐(4‐tert‐butylphenoxy)tetrahydro‐2H‐pyran
  • log k1 (s?1) = (14.08 ± 0.08) ? (205.9 ± 1.0) kJ mol?1 (2.303 RT)?1
The analysis of kinetic and thermodynamic parameters for thermal elimination of 2‐(4‐substituted‐phenoxy)tetrahydro‐2H‐pyranes suggests that the reaction proceeds via 4‐member cyclic transition state. The results obtained confirm a slight increase of rate constant with increasing electron donating ability groups in the phenoxy ring. The pyran hydrogen abstraction by the oxygen of the phenoxy group appears to be the determinant factor in the reaction rate.  相似文献   

14.
Ring strain energies (RSEs) have been calculated for oxygen‐containing spiro compounds using the group equivalent reaction (GER) formalism. The RSEs for all compounds studied were calculated from the energies of fully‐optimized structures at the MP2 + ZPE/cc‐pVDZ level and the more computationally costly G4(MP2) method. RSEs for selected compounds were also calculated with the CBS‐QB3 method, with less than 1 kcal/mol difference observed between G4(MP2) and CBS‐QB3. The difference between the less costly MP2 + ZPE and G4(MP2) methods was less than 1.5 kcal/mol. The highest RSEs were found for the compounds containing two three‐membered rings, and these compounds also exhibited the greatest excess strain energy (ESE) of about 12 kcal/mol. The RSEs of cyclic lactones vary with ring size differently than those of cyclic ethers. Cyclic ethers' RSEs decrease by a small amount from the three‐ to four‐membered rings then decrease drastically as the ring increases to 5 atoms, and approaches zero for the six‐membered ring, the same unexpected behavior as seen in cycloalkanes. Cyclic lactones' RSEs decrease linearly to almost zero from the three‐ to the five‐membered ring, then increase by 1–2 kcal/mol in the six‐membered ring. Lactone‐containing spiro compounds exhibit regularly diminishing ESE as the size of the lactone ring increases, down to about 3 kcal/mol in the δ‐lactone‐containing spiro compound. Substitution of methyl groups decreases RSE in these oxygen‐containing spiro compounds, while substitution of fluorine significantly increases RSE, as has been reported in other compounds. But RSE alone is shown to not correlate completely with chemical reactivity of these spiro compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The bioreduction of N‐oxide compounds is the basis for the mode of action of a number of biologically active molecules. These compounds are thought to act by forming a reactive oxygen species through an intracellular reduction and subsequent redox cycling process within the organism. With these results in mind, the preliminary investigation into the electrochemical reduction of the benzisoxazole 2‐oxide ring system was undertaken, with the thought that this class of compounds would reduce in a similar fashion to other N‐oxide heterocycles. The electrochemical reduction of 3‐phenyl‐1,2‐benzisoxazole 2‐oxide on boron‐doped diamond was studied using cyclic and square wave voltammetry as well as controlled potential electrolysis and HPLC for qualitative identification of the reaction products. It was found that the reduction proceeded with an initial quasi‐reversible one‐electron reduction followed by the very fast cleavage of either the endocyclic or exocyclic N–O bond. Subsequent electron transfer and protonation resulted in an overall two‐electron reduction and formation of the 2‐hydroxyaryl oxime and benzisoxazole. These results are analogous to those observed in the electrochemical reduction of other heterocyclic N‐oxides albeit the reduction of the benzisoxazole N‐oxides takes place at a more negative potential. However, these encouraging results warrant further investigation into the reduction potential of substituted benzisoxazole N‐oxides as well as to elucidate and characterize the nature of the intermediate species involved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The aminoxyl radical 6‐trifluoromethyl‐benzotriazol‐N‐oxyl (TFNO) has been generated from the parent hydroxylamine 6‐CF3‐1‐hydroxy‐benzotriazole (TFBT) by one‐electron oxidation with a CeIV salt and characterized by spectrophotometry and cyclic voltammetry (CV). Rate constants of H‐abstraction (kH) by TFNO from a number of H‐donor benzylic substrates have been determined spectrophotometrically in MeCN solution at 25 °C. A radical H‐atom transfer (HAT) route of oxidation is substantiated for TFNO by several pieces of evidence. The kinetic data also testify the relevance of stereoelectronic effects upon the HAT reactivity of TFNO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrolytic reactions of cyclic bis(3′‐5′)diadenylic acid (c‐di‐AMP) have been followed by Reversed phase high performance liquid chromatography (RP‐HPLC) over a wide pH range at 90 °C. Under neutral and basic conditions (pH ≥ 7), disappearance of the starting material (first‐order in [OH?]) was accompanied by formation of a mixture of adenosine 2′‐monophosphate and 3′‐monophosphate (2′‐AMP and 3′‐AMP). Under very acidic conditions (from H0 = ?0.7 to 0.2), c‐di‐AMP undergoes two parallel reactions (first‐order in [H+]): the starting material is cleaved to 2′‐AMP and 3′‐AMP and depurinated to adenine (i.e., cleavage of the N‐glycosidic bond), the former reaction being slightly faster than the latter one. At pH 1–3, isomerization to cyclic bis(2′‐5′)diadenylic acid competes with the depurination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
By a condensation reaction of (t-Bu)2Si(OH)2 (L) with tin tetrachloride (SnCl4), two different compounds were obtained: a condensation product between two molecules of L and a tin-containing siloxane bicycloheptane ring compound formed by a subsequent reaction between partially hydrolysed SnCl4 and L. The latter was identified by x-ray diffraction. The Raman spectra of both isolated compounds were recorded and confirmed the structure obtained for the ring compound. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The kinetics of the reactions of 2,4‐dinitrofluorobenzene (DNFB) and 2,4‐dinitrochlorobenzene (DNClB) with 2‐guanidinobenzimidazole (2‐GB) at 40 ± 0.2 °C in dimethylsulphoxide (DMSO), toluene, and in toluene–DMSO mixtures, and with 1‐(2‐aminoethyl)piperidine (2‐AEPip) and N‐(3‐aminopropyl)morpholine (3‐APMo) in toluene at 25 ± 0.2 °C were studied under pseudo first‐order conditions. For the reactions of 2‐GB carried out in pure DMSO, the second‐order rate coefficients were independent of the amine concentration. In contrast, the reactions of 2‐GB with DNFB in toluene, showed a kinetic behaviour consistent with a base‐catalysed decomposition of the zwitterionic intermediate. These results suggest an intramolecular H‐bonding of 2‐GB in toluene, which is not present in DMSO. To confirm this interpretation the reactions were studied in DMSO–toluene mixtures. Small amounts of DMSO produce significant increase in rate that is not expected on the basis of the classical effect of a dipolar aprotic medium; the effect is consistent with the formation of a nucleophile/co‐solvent mixed aggregate. For the reactions of 3‐APMo with both substrates in toluene, the second‐order rate coefficients, kA, show a linear dependence on the [amine]. 3‐APMo is able to form a six‐membered ring by an intramolecular H‐bond which prevents the formation of self‐aggregates. In contrast, a third order was observed in the reactions with 2‐AEPip: these results can be interpreted as a H‐bonded homo‐aggregate of the amine acting as a better nucleophile than the monomer. Most of these results can be well explained within the frame of the ‘dimer nucleophile’ mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号