首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new electron‐transporting copolyphenylenes P1NH and P2NH possessing balanced charges crucial to emission efficiency of polymer light‐emitting diodes (PLEDs) have been synthesized and applied as an electron‐transporting layer (ETL). The main chain structure is all para‐linkage for P1NH and both para‐ and meta‐linkage for P2NH , with the same pendant electron‐withdrawing benzimidazolyl and polar diethanolaminohexyloxy groups. Both copolymers possess excellent thermal stability (T d > 300 °C, T g > 100 °C) due to their rigid backbones. In addition, the pendant groups effectively lower LUMO (~ ?2.70 eV) and HOMO (~ ?5.70 eV) levels, resulting in improved electron‐transporting and hole‐blocking capabilities. Multilayer yellow‐emitting PLEDs with a configuration of ITO/PEDOT:PSS/SY/ETL/LiF/Al were successfully fabricated by the spin‐coating process. The maximum luminance and maximum current efficiency of the P1NH ‐based device were 12,881 cd/m2 and 10.94 cd/A, respectively, superior to the performance of P2NH ‐based device (4938 cd/m2, 3.70 cd/A) and the device without ETL (8690 cd/m2, 2.78 cd/A). Current results indicate that P1NH is highly effective in enhancing electron transport and device performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2494–2505  相似文献   

2.
Two novel alternating π‐conjugated copolymers, poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P1 ) and poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(p‐octylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P2 ), were synthesized via the Suzuki coupling method and their optoelectronic properties were investigated. The resulting polymers P1 and P2 were completely soluble in various common organic solvents and their weight‐average molecular weights (Mw) were 5.66 × 104 (polydispersity: 1.97) and 2.13× 104 (polydispersity: 1.54), respectively. Bulk heterojunction (BHJ) solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5)/TiOx/Al configurations. The BHJ solar cell with P1 :PC70BM (1:5) has a power conversion efficiency (PCE) of 1.12% (Jsc= 3.39 mA/cm2, Voc= 0.67 V, FF = 49.31%), measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. We fabricated polymer light‐emitting diodes (PLEDs) in ITO/PEDOT:PSS/emitting polymer:polyethylene glycol (PEG)/Ba/Al configurations. The electroluminescence (EL) maxima of the fabricated PLEDs varied from 526 nm to 556 nm depending on the ratio of the polymer to PEG. The turn‐on voltages of the PLEDs were in the range of 3–8 V depending on the ratio of the polymer to PEG, and the maximum brightness and luminance efficiency were 2103 cd/m2 and 0.37 cd/A at 12 V, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3169–3177, 2010  相似文献   

3.
Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly[2,7‐(9,9‐dioctylfluorene)‐co‐4,7‐{5,6‐bis(3,7‐dimethyloctyloxymethyl)‐2,1,3‐(benzothiadiazole)}] ( PFO‐P2C10BT ) were synthesized and used to fabricate the efficient polymer light‐emitting diodes (PLEDs). The glass transition temperatures of the polymers were found to be higher than that of poly(9,9‐dialkylfluorenes) and are in the range 113–165 °C. We fabricated PLEDs in indium‐tin oxide/PEDOT/light‐emitting polymer/cathode configurations using either double‐layer LiF/Al or triple‐layer Alq3/LiF/Al cathode structures. The new copolymers were found to have emission colors that vary from greenish blue (491 nm) to green (543 nm) depending on the copolymer composition. The maximum brightness and luminance efficiency of these PLEDs were found to be up to 5347 cd/m2 and 1.51 cd/A at 10 V, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6762–6769, 2008  相似文献   

4.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A hole‐injection/transport bilayer structure on an indium tin oxide (ITO) layer was fabricated using two photocrosslinkable polymers with different molecular energy levels. Two photoreactive polymers were synthesized using 2,7‐(or 3,6‐)‐dibromo‐9‐(6‐((3‐methyloxetan‐3‐yl)methoxy)hexyl)‐9H‐carbazole) and 2,4‐dimethyl‐N,N‐bis(4‐ (4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)phenyl)aniline via a Suzuki coupling reaction. When the oxetane groups were photopolymerized in the presence of a cationic photoinitiator, the photocured film showed good solvent resistance and compatibility with a poly(N‐vinylcarbazole) (PVK)‐based emitting layer. Without the use of a conventional hole injection layer (HIL) of poly(3,4‐ethylenedioxythiophene)/(polystyrenesulfonate) (PEDOT:PSS), the resulting green light‐emitting device bearing PVK: 5‐4‐tert‐butylphenyl‐1,3,4‐oxadiazole (PBD):Ir(Cz‐ppy)3 exhibited a maximum external quantum efficiency of 9.69%; this corresponds to a luminous efficiency of 29.57 cd/A for the device K‐4 configuration ITO/POx‐I/POx‐II/PVK:PBD:Ir(Cz‐ppy)3/triazole/Alq3/LiF/Al. These values are much higher than those of PLEDs using conventional PEDOT:PSS as a single HIL. The significant improvement in device efficiency is the result of suppression of the hole injection/transport properties through double‐layered photocrosslinked‐conjugated polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

7.
To fully exploit the properties of light‐emitting polymers (LEPs) in electroluminescent applications, it is of paramount importance to develop efficient electrical contacts. An ideal electrode is highly conductive, stable, provides a low barrier to carrier injection, and does not degrade the LEP upon contact. It is difficult to find a single homogeneous material that satisfies all of these requirements. Hence, contact optimization has often required the development of multilayer structures. In particular, indium tin oxide covered by a film of poly(ethylene‐dioxythiophene):poly(styrene sulfonic acid) {ITO/PEDOT:PSS} has become a favorite combination for the transparent anode, and heterostructures of LiF and CsF with metals (Al and Ca) have proven to be efficient electron‐injecting contacts. Here we review our progress in the understanding of the operation of light‐emitting diodes incorporating such contacts, in particular by gauging the materials' energy‐level lineup via electroabsorption measurements. Among the series of LEDs investigated, using a high‐energy‐gap blue polyfuorene polymer, CsF/Ca/Al and LiF/Ca/Al electrodes lead to the best improvements in electron injection. The most promising performance for applications, where a high luminance (~1600 cd/m2 at 5 V) is also accompanied by a high maximum efficiency (~3 lm/W), was obtained with LiF/Ca/Al cathodes and ITO/PEDOT:PSS anodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2649–2664, 2003  相似文献   

8.
The performance of a blue polymer light‐emitting diodes (PLED) was significantly improved by doping a controlled amount (<1%) of a hole transport molecule N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4″‐diamine (NPB) into the emitting layer. Hole carrier mobility of the blue emitting polymer, BP105 (trade name of The Dow Chemicals Co.), increased from 5.27 × 10‐7 cm‐2/Vs of the pristine BP105 to 1.80 × 10‐6 cm‐2/Vs with the addition of 1% NPB in BP105. The enhanced carrier mobility greatly promoted performance of a blue PLED device with a device structure of ITO/PEDOT:PSS/BP105+x% NPB/LiF/Ca/Al. Luminance increased from 573 cd/m2 to 2,720 cd/m2 at 6V and efficiency increased from 1.1 lm/W to 1.6 lm/W at 1,000 cd/m2 with 1% NPB in BP105. The most important improvement was an increase in the lifetime of the blue device from 80 to 120 hours at an initial luminance of 400 cd/m2. We found that by choosing the appropriate dopant with good energy alignment and controlled dopant concentration, the performance of a blue PLED device could be greatly improved.  相似文献   

9.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

10.
This study reports the synthesis, curing, and optoelectronic properties of a solution‐processable, thermally cross‐linkable electron‐ and hole‐blocking material containing fluorene‐core and three periphery N‐phenyl‐N‐(4‐vinylphenyl)benzeneamine ( FTV ). The FTV exhibited good thermal stability with Td above 478 °C in nitrogen atmosphere. The FTV is readily cross‐linked via terminal vinyl groups by heating at 160 °C for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLED device [ITO/PEDOT:PSS/cured‐ FTV /MEH‐PPV/Ca (50 nm)/Al (100 nm)] was successfully fabricated using solution processed. Inserting cured‐ FTV is between PEDOT:PSS and MEH‐PPV results in simultaneous reduction in hole injection from PEDOT:PSS to MEH‐PPV and blocking in electron transport from MEH‐PPV to anode. The maximum luminance and maximum current efficiency were enhanced from 1810 and 0.27 to 4640 cd/m2 and 1.08 cd/A, respectively, after inserting cured‐ FTV layer. Current results demonstrate that the thermally cross‐linkable FTV enhances not only device efficiency but also film homogeneity after thermal curing. FTV is a promising electron‐ and hole‐blocking material applicable for the fabrication of multilayer PLEDs based on PPV derivatives. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2012  相似文献   

11.
New deep‐red light‐emitting phosphorescent dendrimers with hole‐transporting carbazole dendrons were synthesized by reacting tris(2‐benzo[b]thiophen‐2‐yl‐pyridyl) iridium (III) complex with carbazolyl dendrons by DCC‐catalyzed esterification. The resulting first‐, second‐, and third‐generation dendrimers were found to be highly efficient as solution‐processable emitting materials and for use in host‐free electrophosphorescent light‐emitting diodes. We fabricated a host‐free dendrimer EL device with configuration ITO/PEDOT:PSS (40 nm)/dendrimer (55 nm)/BCP (10 nm)/Alq3 (40 nm)/LiF (1 nm)/Al (100 nm) and characterized the device performance. The multilayered devices showed luminance of 561 cd/m2 at 383.4 mA/cm2 (12 V) for 15 , 1302 cd/m2 at 321.3 mA/cm2 (14 V) for 16 , and 422 cd/m2 at 94.4 mA/cm2 (18 V) for 17 . The third‐generation dendrimer, 17 (ηext = 6.12% at 7.5 V), showed the highest external quantum efficiency (EQE) with an increase in the density of the light‐harvesting carbazole dendron. Three dendrimers exhibited considerably pure deep‐red emission with CIE 1931 (Commission International de L'Eclairage) chromaticity coordinates of x = 0.70, y = 0.30. The CIE coordinates remained very stable with the current density. The integration of rigid hole‐transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution‐processable materials for dendrimer light‐emitting diode (DLED) applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7517–7533, 2008  相似文献   

12.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Lee  Joo-Won  kim  jai-Kyeong  Yoon  Young-Soo 《中国化学》2010,28(1):115-118
High efficiency organic light‐emitting‐devices (OLED) have been fabricated by incorporation of a polymeric layer as a controller of the unbalanced charge. In device configuration of ITO/PEDOT:PSS/PVK/Alq3/LiF:Al, poly(N‐vinylcarbazole) (PVK) was selected as a block‐ing layer (BL) because it has a hole transporting property and a higher band gap, especially a lower LUMO level than the emitting layer (Alq3) and a higher HOMO level than the hole injection layer (PEDOT: PSS). As a result, the optimal structure with this bl layer showed a peak efficiency of 6.89 cd/A and 2.30 lm/W compared to the device without the PVK layer of 1.08 cd/A, 0.27 lm/W. This result shows that the PVK layer could effec‐tively block the electrons from metal cathode and confine them in the emitting layer and accomplish the charge balance, which leads to enhanced hole‐electron balance for achieving high recombination efficiency.  相似文献   

14.
A series of novel arylene ether polymers (P5F‐BCzVFs) containing both pentafluorene (5F) and distyrylarylene derivative (BCzVF) units in the side chains for efficient pure blue light emission were prepared by a facile, metal‐free condensation polymerization. The emission spectra indicated that color tuning could be achieved through efficient Förster energy transfer from the deep‐blue 5F host to the pure‐blue BCzVF dopant. Single‐layer polymer light‐emitting diodes (PLEDs) based on P5F‐BCzVFs (ITO/(PEDOT:PSS)/polymer/Ca/Al) exhibited voltage‐independent and stable pure blue emission with a Commission International de L'Eclairage (CIE) coordinate of (0.15, 0.15), a maximum brightness of 3576 cd/m2, and a maximum luminous efficiencies of 2.15 cd/A, respectively. As most polymers with dopant‐host systems, the luminous efficiencies of all P5F‐BCzVFs surpassed that of the host‐only polymer (P5F), due to the energy transfer and charge trapping from the host to the dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Novel photo‐crosslinkable hole‐transport and host materials incorporated into multilayer blue phosphorescent polymer light‐emitting diodes (Ph‐PLEDs) were demonstrated in this study. The oxetane‐containing copolymers, which function as hole‐transport layers (HTL), could be cured by UV irradiation in the presence of a cationic photoinitiator. The composition of the two monomers was varied to yield three different hole‐transporting copolymers, [Poly(9,9′‐(5‐(((4‐(7‐(4‐(((3‐methyloxetan‐3‐yl)methoxy)methyl)phenyl)octan‐3‐yl)benzyl)oxy)methyl)?1,3‐phenylene)bis(9H‐carbazole)) ( P(mCP‐Ox)‐I , ‐II , and ‐III )]. In addition, monomer 1 was copolymerized with styrene to produce copolymer P(mCP‐Ph) as a host material for bis[2‐(4,6‐difluorophenyl)pyridinato‐C2,N](picolinato)iridium(III) (FIrpic), a blue‐emitting dopant. All mCP‐based copolymers displayed high glass transition temperatures (Tg) of up to 130–140 °C and triplet energies of up to 3.00 eV. The blue Ph‐PLEDs exhibited a maximum external quantum efficiency of 2.55%, in addition to a luminous efficiency of 8.75 cd A?1 when using the device configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/ P(mCP‐OX)‐III / P(mCP‐Ph) :FIrpic(15 wt %)/3,3′‐[5′‐[3‐(3‐pyridinyl)phenyl][1,1′:3′,1′′‐terphenyl]‐3,3′′‐diyl]bispyridine/LiF/Al. The device bearing P(mCP‐Ox)‐III HTL, containing the highest composition of mCP unit, exhibited better performance than the other devices, which is attributed to induction of more balanced charge carriers and carrier recombination in the emissive layer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 707–718  相似文献   

16.
Three novel copolyfluorenes ( P1 ‐ P3 ) containing pendant bipolar groups (2.5–7.7 mol %), directly linked hole‐transporting carbazole and electron‐transporting aromatic 1,2,4‐triazole, were synthesized by the Suzuki coupling reaction and applied to enhance emission efficiency of polymer light‐emitting diodes based on conventional MEH‐PPV. The bipolar groups not only suppress undesirable green emission of polyfluorene under thermal annealing, but also promote electron‐ and hole‐affinity of the resulting copolyfluorenes. Blending the bipolar copolyfluorenes with MEH‐PPV results in significant enhancement of device performance [ITO/PEDOT:PSS/MEH‐PPV+ P1 , P2 or P3 /Ca(50 nm)/Al(100 nm)]. The maximum luminance and luminance efficiency were enhanced from 3230 cd/m2 and 0.29 cd/A of MEH‐PPV‐only device to 15,690 cd/m2 and 0.81 cd/A (blend device with MEH‐PPV/ P3 = 94/6 containing about 0.46 wt % of pendant bipolar residues), respectively. Our results demonstrate the efficacy of the bipolar copolyfluorenes in enhancing emission efficiency of MEH‐PPV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
In this paper, we describe a bipolar molecular design for small molecule solution‐processed organic light emitting diodes (OLEDs). Combining the rigidity of the conjugated emissive cores and the flexibility of the peripheral alkyl‐linked carbazole groups, two series of highly efficient bipolar RGB (red, green, blue) emitters have been synthesized and characterized. The emissive cores are composed of electron‐withdrawing groups; the carbazole groups endow the materials electron‐donating units. Such bipolar structures are advantageous for the carrier injection and balance. Four peripheral carbazole groups are introduced in T‐series materials (TCDqC, TCSoC, TCBzC, TCNzC), and another four in O‐series materials (OCDqC, OCSoC, OCBzC, OCNzC). With the single‐layer device configuration of ITO/PEDOT:PSS/emitting layer/CsF/Al, two green devices exhibited excellent performance with a maximum luminescence efficiency of over 6.4 cd A?1, and a high maximum luminance of more than 6700 cd m?2. In addition, compared with the T‐series, the luminescence efficiency of blue and red devices based on O‐series materials increased from 1.6 to 2.8 cd A?1 and 0.2 to 1.3 cd A?1, respectively. To our knowledge, the performance of the blue device based on OCSoC is among the best of the blue small‐molecule solution‐processed single‐layer devices reported so far.  相似文献   

18.
An electroluminescent polymer was synthesized by Wittig condensation and characterized by the measurements of 1H‐NMR, IR, gel permeation chromatography (GPC), UV–Vis, PL, and cyclic voltammetry (CV). The polymer can be dissolved in common organic solvents such as tetrahydrofuran (THF), chloroform, and dichloromethane. The electroluminescent investigation showed that the non‐doped devices with a double‐layer configuration (ITO/PEDOT:PSS/Polymer/Mg:Ag) have a stable green emission property. The maximum luminance of the annealed device reaches 2317 cd/m2. The emission maximum and the CIE 1931 coordinate values are respectively stabilized at 552 nm and near (x, y) = (0.43, 0.55) with different voltages. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

20.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号