首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
高潭华 《物理学报》2015,64(7):76801-076801
采用密度泛函理论(DFT)广义梯度近似GGA和HSB06方法研究了氢化双层硅烯(silicene)的结构和电子性质, 结果表明: 氢化后的双层硅烯可能存在三种稳定的构型, AA椅型、AB椅型和AA船型, 其中AA椅型和AB椅型结构最为稳定, 氢化后这三种稳定构型材料的性质由零带隙的半金属(semimetal)转变为禁带宽度分别为1.208, 1.437和1.111 eV 的间接带隙的半导体, 采用混合泛函HSB06计算修正得到的带隙分别为1.595, 1.785 和1.592 eV. 进一步分析了在双轴应变下氢化双层硅烯的带隙随应变的关系, 得到应变可以连续的调节材料的带隙宽度, 这些性质有可能应用于未来的纳米电子器件.  相似文献   

2.
二维硅烯的商业用途通常受到其零带隙的抑制,限制了其在纳米电子和光电器件中的应用.利用基于密度泛函理论的第一性原理计算,单层硅烯的带隙通过卤原子的化学官能化被成功打开了,并综合分析了卤化对单层硅烯的结构,电子和光学性质的影响.研究结果表明卤化使结构变得扭曲,但保持了良好的稳定性.通过HSE06泛函,全功能化赋予硅烯1.390至2.123 eV的直接带隙.键合机理分析表明,卤原子与主体硅原子之间的键合主要是离子键.最后,光学性质计算表明,I-Si-I单层在光子频率为10.9 eV时达到最大光吸收,吸收值为122000 cm-1,使其成为设计新型纳米电子和光电器件的有希望的候选材料.  相似文献   

3.
硅烯是单原子层的硅薄膜,具有类石墨烯结构.因此拥有与石墨烯相似的各种奇特的热学、化学、光学和电学性质.近年来,硅烯引起了研究者的广泛关注,作为一种新型的二维狄拉克电子材料,硅烯在理论计算和实验上都取得了不少新的进展.本文主要在前人对硅烯实施边缘钝化、掺杂、外加电场、加应力或者表面官能团修饰和吸附等研究的情况下,结合当前硅烯的研究发展趋势,重点研究了不同掺杂对硅烯性质的影响,并探讨硅烯在未来硅基电子器件的应用前景.  相似文献   

4.
刘伯飞  白立沙  魏长春  孙建  侯国付  赵颖  张晓丹 《物理学报》2013,62(20):208801-208801
采用射频等离子体增强化学气相沉积技术, 研究了非晶硅锗薄膜太阳电池. 针对非晶硅锗薄膜材料的本身特性, 通过调控硅锗合金中硅锗的比例, 实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制. 借助于本征层硅锗材料帯隙梯度的设计, 获得了可有效用于多结叠层电池中的非晶硅锗电池. 关键词: 非晶硅锗薄膜太阳电池 短路电流密度 开路电压 带隙梯度  相似文献   

5.
锗基集成电子学的发展潜力源于其极高的载流子迁移率以及与现有的硅基和锗基半导体工业的兼容性,而锗烯微小带隙能带特点极大程度地阻碍其应用.因此,在不降低载流子迁移率的情况下,打开一个相当大的带隙是其应用于逻辑电路中首先要解决的问题.本文采用范德瓦耳斯力修正的密度泛函理论计算方法,研究了电场作用下有机分子吸附和衬底对锗烯原子结构和电学性质的影响.研究结果表明,有机分子吸附和衬底通过弱相互作用破坏了锗烯亚晶格的对称性,从而在狄拉克点上打开了相当大的带隙.苯/锗烯和六氟苯/锗烯体系均在K点打开了带隙.当使用表面完全氢化的锗烯(锗烷HGeH)衬底时,苯/锗烯/HGeH和六氟苯/锗烯/HGeH体系的带隙可进一步变宽,带隙值分别为0.152和0.105 eV.在外电场作用下,上述锗烯体系可实现大范围的近似线性可调谐带隙.更重要的是,载流子迁移率在很大程度上得以保留.本文提出了一种有效的可调控锗烯带隙的设计方法,为锗烯在场效应管和其他纳米电子学器件中的应用提供了重要的理论指导.  相似文献   

6.
安兴涛  刁淑萌 《物理学报》2014,63(18):187304-187304
硅烯是由单层硅原子形成的二维蜂窝状晶格结构,具有石墨烯类似的电学性质,由于硅烯中存在比较强的自旋轨道耦合而备受关注.本文利用非平衡格林函数方法研究了门电压控制的硅烯量子线中电子输运性质和能带结构.研究发现,只有在较强的门电压下,而且硅烯量子线具有较好的锯齿形或扶手椅形边界而不存在额外硅原子时,硅烯量子线中才存在无能隙的自旋极化边缘态.另外,计算结果表明这种门电压控制的硅烯量子线中边缘态在每个能谷处自旋是极化的.这些计算结果将为实验上利用电场制作硅烯纳米结构提供理论支持.  相似文献   

7.
黄艳平  袁健美  郭刚  毛宇亮 《物理学报》2015,64(1):13101-013101
基于密度泛函理论的第一性原理计算, 研究了硅烯饱和吸附碱金属元素原子的稳定性、微观几何结构和电子性质, 并与纯硅烯及其饱和氢化结构进行了对比分析. 研究发现复合物SiX(X=Li, Na, K, Rb)的形成能都是负的, 相对于纯硅烯来说可以稳定存在. Bader电荷分析表明, 电荷从碱金属原子转移至硅原子. 从成键方式来看, 硅烯与氢原子形成共价键, 而与碱金属原子之间形成的键主要是离子性成键, 但还存在部分共价关联成分. 能带计算表明, 锂原子饱和吸附在硅烯形成的复合物SiLi是直接带隙的半导体, 带隙大小为0.34 eV. 其他碱金属饱和吸附在硅烯上形成的复合物都表现为金属性.  相似文献   

8.
武红  李峰 《物理学报》2016,65(9):96801-096801
锗烯是继石墨烯、硅烯发现以来最重要的二维纳米材料之一, 以其优异的物理化学性质迅速得到人们的广泛关注. 然而, 锗烯具有的零带隙能带特点(狄拉克点)极大程度地限制了其在微电子纳米材料方面的应用. 本文采用范德华力修正的密度泛函计算方法, 研究了锗烯、锗烷、锗烯/锗烷的几何和电学性质. 研究发现, 锗烯和锗烷可以通过弱相互作用形成稳定的双层结构, 并在锗烯中打开一个85 meV的带隙. 电子结构分析表明, Ge-H/π 的存在破坏了锗烯子晶格的对称性, 从而在狄拉克点上打开一个带隙. 差分电荷密度图分析表明有部分电荷从H原子的s轨道转移至Ge的pz轨道. 该电荷转移机制增强了锗烯与锗烷之间的相互作用力, 是形成锗烯/锗烷双层二维纳米结构的主要原因. 进一步研究还发现, 锗烷/锗烯/锗烷的三明治结构无法在锗烯中打开带隙. 这是由于两侧的锗烷对夹层的锗烯作用力等价, 无法破坏锗烯的子晶格对称性, 所以无法打开锗烯带隙. 最后, 所有计算结果都在高精度杂化密度泛函HSE06计算精度下得到进一步验证. 因此, 本文从理论上提出了一种切实可行的打开锗烯狄拉克点的方法, 为锗烯在场效应管和其他纳米材料中的应用提供了理论指导.  相似文献   

9.
黑磷晶体的单原子层结构被定义为磷烯,它具有独特的褶皱形态和一些区别于其它二维晶体材料的特性,如可调控的直接带隙,高开关比,高载流子迁移率以及优异的光学饱和吸收特性等,使其在纳米电子和纳米光学领域具有潜在应用价值.此外,蓝磷烯被理论计算所预测,它是黑磷烯的一种同素异形体,具有许多类似黑磷烯的优异特性.本文主要介绍了当前两种构型磷烯的研究进展,包括黑/蓝磷烯各自的晶体结构、制备方法、物理特性和稳定性;最后对目前磷烯研究中存在的问题与挑战提出了一些见解和展望.  相似文献   

10.
惠治鑫  贺鹏飞  戴瑛  吴艾辉 《物理学报》2015,64(14):143101-143101
硅功能化石墨烯(硅化烯)作为锂离子电池的负极材料, 一旦发生分层或粉化等损伤现象, 会严重地降低材料的电子输运能力和储锂容量, 减少电池的使用寿命, 因此要求负极材料具有较强的力学可靠性. 考虑到传统分子动力学方法的模拟尺度很难达到硅化烯负极材料的真实尺度, 首先采用Tersoff 势函数和Lennard-Jones 势函数建立了多种硅化烯的全原子数值模型, 计算材料的各种弹性模量和吸附能; 然后采用珠子-弹簧结构, 根据力学平衡条件和能量守恒定律, 结合全原子模型的计算结果, 建立了硅化烯粗粒模型及其系统的能量方程; 最后, 通过对比石墨烯粗粒模型与其全原子模型的拉伸性能, 验证了硅化烯粗粒模型的有效性.  相似文献   

11.
Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as an option for post-silicon electronics, as an alternative to graphene and other two-dimensional materials. Despite its theoretical high carrier mobility,the zero band gap characteristic makes pure silicene impossible to use directly as a field effect transistor(FET) operating at room temperature. Here, we first review the theoretical approaches to open a band gap in silicene without diminishing its excellent electronic properties and the corresponding simulations of silicene transistors based on an opened band gap.An all-metallic silicene FET without an opened band gap is also introduced. The two chief obstacles for realization of a silicene transistor are silicene's strong interaction with a metal template and its instability in air. In the final part, we briefly describe a recent experimental advance in fabrication of a proof-of-concept silicene device with Dirac ambipolar charge transport resembling a graphene FET, fabricated via a growth-transfer technique.  相似文献   

12.
We present first principles theory calculations on the mechanical and electronic properties of silicene and silicane structure under uniaxial tensile strain along different directions. Chirality effect is more significant in the mechanical properties of silicene than those of silicane. Different failure mechanisms are identified. A small band gap (up to 0.8 eV) is developed from zero with silicene structure under uniaxial tension and vanishes before the structure reaches its in-plane ultimate strength. However, a pre-existing band gap (2.39 eV) exists with silicane structure and decreases to zero with the increasing tensile strain without chirality effects.  相似文献   

13.
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.  相似文献   

14.
Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures(vd WHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene(BN/Si) vd WHs using first-principles calculations.We calculate the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)_3/Si/BN. In(BN)_n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO_2 is semiconducting.  相似文献   

15.
Using density functional theory (DFT) with both the generalized gradient approximation (GGA) and hybrid functionals, we have investigated the structural, electronic and magnetic properties of a two-dimensional hydrogenated silicon-based material. The compounds, i.e. silicene, full- and half-hydrogenated silicene, are studied and their properties are compared. Our results suggest that silicene is a gapless semimetal. The coverage and arrangement of the absorbed hydrogen atoms on silicene influence significantly the characteristics of the resulting band structures, such as the direct/indirect band gaps or metallic/semiconducting features. Moreover, it is interesting to see that half-hydrogenated silicene with chair-like structure is shown to be a ferromagnetic semiconductor.  相似文献   

16.
《Physics letters. A》2020,384(32):126826
In this paper, hydrogenation is used for the generation of band gap in silicene and the hydrogenated silicene is then studied for its spintronic application. Upon hydrogenation, silicene transforms into a wide band gap material with a band gap of 3.32 eV. Parameters like magneto-resistance and spin-filtering efficiency of magnetic tunnel junction (MTJ) with CrO2 as semi-metallic electrodes and hydrogenated silicene as scattering region are found to increase compared to pristine silicene as scattering region. The simulation results show that the magneto-resistance of hydrogenated silicene remains above 85% (higher than the pristine counterpart) for the entire bias range. In addition, the spin-filtering efficiency in hydrogenated silicene reaches a value as high as 96% whereas in case of pristine silicene it remains below 90% for the entire bias range.  相似文献   

17.
Silicene, as the silicon analog of graphene, is successfully fabricated by epitaxially growing it on various substrates.Like free-standing graphene, free-standing silicene possesses a honeycomb structure and Dirac-cone-shaped energy band,resulting in many fascinating properties such as high carrier mobility, quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. The existence of the honeycomb crystal structure and the Dirac cone of silicene is crucial for observation of its intrinsic properties. In this review, we systematically discuss the substrate effects on the atomic structure and electronic properties of silicene from a theoretical point of view, especially with emphasis on the changes of the Dirac cone.  相似文献   

18.
Silicene-the silicon-based counterpart of graphene-has a two dimensional structure that is responsible for the variety of potentially useful chemical and physical properties. The existence of silicene has been achieved recently owing to experiments involving epitaxial growth of silicon as stripes on Ag(001), ribbons on Ag(110), and sheets on Ag(111). The nano-ribbons observed on Ag(110) were found-by both high definition experimental scanning tunneling microscopy images and density functional theory calculations-to consist of an arched honeycomb structure. Angle resolved photo-emission experiments on these silicene nano-ribbons on Ag(110), along the direction of the ribbons, showed a band structure which is analogous to the Dirac cones of graphene. Unlike silicon surfaces, which are highly reactive to oxygen, the silicene nano-ribbons were found to be resistant to oxygen reactivity.On the theoretical side, recent extensive efforts have been deployed to understand the properties of standalone silicene sheets and nano-ribbons using both tight-binding and density functional theory calculations. Unlike graphene it is demonstrated that silicene sheets are stable only if a small buckling (0.44 Å) is present. The electronic properties of silicene nano-ribbons and silicene sheets were found to resemble those of graphene.Although this is a fairly new avenue, the already obtained outcome from these important first steps in understanding silicene showed promising features that could give a new future to silicon in the electronics industry, thus opening a promising route toward wide-range applications. In this review, we plan to introduce silicene by presenting the available experimental and theoretical studies performed to date, and suggest future directions to be explored to make the synthesis of silicene a viable one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号