首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The oxidative electrodeposition of NiTSPP (tetrakis(4-sulfonatophenyl) Ni porphyrin) on ITO electrode from 0.1 M NaOH aqueous solution has been studied, and UV-visible and reflection FTIR spectroscopies have been used to analyze the composition of such film. By use of UV-vis spectroscopy, small absorbance of the film and an almost nulling effect on the Soret band of the porphyrin along the Ni(III)/Ni(II) redox process were observed. The reflection FTIR spectroscopy detected the presence of Ni-OH groups in the reduced film and as well the state of the porphyrin molecules as radical cation. Moreover, the porphyrin has been quantified by means of the area of the vibration bands assigned to the sulfonate groups by using as reference a Langmuir-Blodgett film containing a known surface concentration of NiTSPP. These results lead us propose the formation of a conductor salt by electrocrystallization, with stoichiometries TSPP/Ni(II)(OH)2 and TSPP/Ni(III)OOH, for its reduced and oxidized forms, respectively. In these two forms, the porphyrin rings will be present as radical cation, which may be stabilized through its dimerization or polymerization.  相似文献   

2.
Anodically polymerized films of nickel salen formed on glassy carbon, optically transparent tin oxide, and platinum electrodes in acetonitrile containing tetramethylammonium tetrafluoroborate have been examined by means of cyclic voltammetry, thin-layer voltammetry, spectroelectrochemistry, and scanning electron microscopy. With the aid of thin-layer voltammetry, it has been confirmed that the global oxidative polymerization of nickel(II) salen involves three electrons per monomer. Polymerization proceeds through two distinct phases, the formation of which depend on the potential. Once the polymer film has been formed, the anodic process consists of the reversible one-electron nickel(III)/nickel(II) redox couple. Cyclic voltammetry along with spectroelectrochemistry has been employed to probe the roles of the nickel(III)/nickel(II) and nickel(II)/nickel(I) redox couples in the electrochemical response of the polymer film as well as the interconversion of the different oxidation states of nickel.  相似文献   

3.
The molecular and electronic structures of the electron transfer series of four-coordinate square-planar nickel complexes with the ligand o-phenylenebis(N'-methyloxamidate), [NiL]z (z = 2-, 1-, 0), have been evaluated by DFT and TDDFT calculations, and most of their experimentally available structural and spectroscopic properties (X. Ottenwaelder et al., Dalton Trans., 2005, DOI: 10.1039/b502478a) have been reasonably reproduced at the B3LYP level of theory. The anionic species [NiL]2- and [NiL]- are genuine low-spin nickel II and nickel III complexes with diamagnetic singlet (S = 0) and paramagnetic doublet (S = 1/2) states, respectively. The nickel III complex presents shorter Ni-N(amidate) bond distances (1.85-1.90 A) than the parent nickel II complex (1.88-1.93 A) and characteristic LMCT bands in the NIR region (lambda max = 794 and 829 nm) while the analogous MLCT bands for the nickel(II) complex are in the UV region (lambda max = 346 and 349 nm). The neutral species [NiL] is a nickel III o-benzosemiquinonediimine pi-cation radical complex with a diamagnetic singlet (S = 0) and a paramagnetic triplet (S = 1) states fairly close in energy but fundamentally different in orbital configuration. The singlet metal-radical ground state results from the antiferromagnetic coupling between the 3d(yz) orbital of the Ni III ion (S(M) = 1/2) and the pi(b) orbital of the benzosemiquinone-type radical ligand (S(L) = 1/2), which have a large overlap and thus strong covalent bonding. The triplet metal-radical excited state involves the ferromagnetic coupling between the Ni III 3d(zx) orbital and the benzosemiquinone-type pi(b) orbital, which are orthogonal to each other. The singlet and triplet states of the nickel III pi-cation radical complex possess characteristic quinoid-type short-long-short alternating sequence of C-C bonds in the benzene ring, as well as intense MLCT transitions in the VIS (lambda max = 664 nm) and NIR (lambda max = 884 nm) regions, respectively.  相似文献   

4.
Heme proteins were immobilized on glass carbon electrodes by poly (N-isopropylac-yamide-co-3-methacryloxy-propyl-trimethoxysilane) (PNM) and exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks at about -0.35 V versus a saturated calomel electrode in pH 7.0 buffer solution, corresponding to hemeFe(III)+e-->hemeFe(II). Some electrochemical parameters were calculated by performing nonlinear regression analysis of square wave voltammetry (SWV) experimental data. The formal potential was linearly dependent on pH, indicating the electron transfer of Fe(III)/Fe(II) redox couple accompanied by the transfer of proton. Ultraviolet visible and Fourier transform infrared spectra suggested that the conformation of proteins in the PNM films retained the essential feature of its native secondary structure. Atomic force microscopy images demonstrated the existence of interaction between heme proteins and PNM. N,N-dimethylformamide (DMF) played an important role in immobilizing proteins and enhancing electron transfer between proteins and electrodes. Electrochemical catalytic reductions of hydrogen peroxide and trichloroacetic acid by proteins entrapped in PNM film were also discussed, showing the potential applicability of the film modified electrodes as a biosensor.  相似文献   

5.
Nickel(II) complexes of the general composition Ni(L)X(2) (where X=SCN, NO(3) and 1/2SO(4) and ligands=L(1) L(2) and L(3)) have been synthesized and characterized by elemental analyses, magnetic moments, IR, (1)H NMR, (13)C NMR and electronic spectral studies. Nickel(II) ions, such as nitrates, thiocyantes and sulphates were found to act as templates for the cyclic condensations [1+1] and [2+2] of NH(2--)C(6)H(4)--O--CH(2)--CH(2)--O--C(6)H(4)--NH(2), NH(2)--(CH(2))(2)--NH(2) and NH(2)--CH(CH(3))--CH(2)--NH(2) with C(6)H(5)--CO--CO--C(6)H(5), C(6)H(5)--CO--CH(2)--CO--C(6)H(5) and (COOH--CH(2)--CH(2))(2)S. All the complexes show magnetic moments corresponding to two unpaired electrons except [Ni(L(1))](NO(3))(2) and [Ni(L(2))](NO(3))(2) complexes which are diamagnetic. Electronic spectroscopy was used to analyse the differences between the paramagnetic and diamagnetic forms. Electrochemical properties have been studied extensively for Ni(III/II) and Ni(II/I) couples. The equilibrium between the paramagnetic and diamagnetic forms and the nickel(III/II) couple are strongly dependent on the electrolyte. It has been observed that the sulphate group coordinated selectively on the apical position of the nickel(II) centers of the compounds. The structural and electrochemical studies suggest that cooperative effects, involving coordination of sulphate to one nickel center, is responsible for the recognition of this anion. Various ligand field parameters have been calculated and discussed.  相似文献   

6.
Reaction of the nickel(II) complex of an inverted porphyrin, (5,10,15,20-tetraphenyl-2-aza-21-carbaporphyrinato)nickel(II) (1), with haloalkanes in the presence of proton scavengers yields 21-C-alkylated complexes. The products are separated and characterized spectroscopically. Chirality of the formed substituted metalloporphyrins is discussed on the basis of the (1)H NMR spectra. Diastereomers are observed for the complexes containing chiral substituents. Protonation of the external nitrogen of the inverted pyrrole is combined with coordination of the apical ligand that leads to paramagnetic nickel(II) complexes. Very strong differentiation of the isotropic shift for diastereotopic methylene protons is observed in (1)H NMR spectra of the protonated paramagnetic species. For the systems containing benzyl, allyl, and ethoxymethyl substituents a mild dealkylation in solution of protonated complexes is observed in the presence of oxygen. Redox properties of the alkylated complexes are studied by means of cyclic voltammetry. Oxidation of the nickel center in 21-alkylated systems takes place at the potentials comparable to that of unsubstituted complex 1. Protonation introduces small changes to the potential of the Ni(II)/Ni(III) redox couple, but it stabilizes nickel(I) species. Products of chemical oxidation and reduction of the alkylated complexes are detected by means of the EPR spectroscopy indicating in both cases metal-centered redox processes.  相似文献   

7.
The formation of a sulfuranyl radical intermediate followed by methyl transfer to the nickel(I) center of coenzyme F430 and generation of the disulfide has been proposed as a possible mechanism for the formation of methane catalyzed by methyl coenzyme M reductase in methanogenic archaea. In order to test this hypothesis, a sterically shielded, bifunctional model substrate that contained a methyl thioether and a sulfhydryl functional group, which could form a five-membered cyclic sulfuranyl radical according to the postulated mechanism, was synthesized. The corresponding thiolate reacted with Ni(II) salts to give a diamagnetic, square-planar Ni(II) dithiolate complex, which was characterized by X-ray diffraction. Upon irradiation of this complex with light of lambda > 300 nm, methane and the cyclic disulfide were formed, whereas irradiation of the thiolate in the absence of nickel gave only traces of methane and no cyclic disulfide. The observed products are consistent with the postulated mechanism via a sulfuranyl radical, and the role of light is interpreted as the formation of a Ni(I)/thiyl radical pair upon excitation of a charge-transfer band of the Ni(II) dithiolate. In the presence of a large excess of thiolate, the diamagnetic complex was transformed into a paramagnetic, five- or six-coordinate complex that proved to be more active in the generation of both methane and the cyclic disulfide, than the square-planar diamagnetic dithiolate.  相似文献   

8.
The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.  相似文献   

9.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

10.
《Polyhedron》2002,21(27-28):2711-2717
Schiff bases obtained from N,N′-(1R,2R)-1,2-cyclohexanediamine and 2-hydroxy-3-methylbenzaldehyde, 2-hydroxy-5-methylbenzaldehyde, have been used as ligands for copper(II), cobalt(II) and nickel(II). The complexes were characterized with UV–Vis, circular dichroism (CD), infrared, diamagnetic and paramagnetic 1H NMR spectroscopy. CD spectra revealed exciton coupled π→π* transitions. Assignments of LMCT and d–d transitions in CD spectra of Ni(II), Co(II) and Cu(II) complexes is proposed. CD data are characteristic for central ion tetrahedral distortion from the planarity and λ conformation of the cyclohexane ring. 1H NMR of Ni(II) complexes exhibited significant coordination shifts of CHN and ring protons which are in the closest proximity to Ni(II). The 1H NMR paramagnetic spectra of Co(II) complexes revealed the most upfield shifted resonance at −60 ppm assigned to CHN and −28 ppm to hydrogen atom at C(5′) of the phenyl ring. Results of spectral analyses suggest central ions in a distorted square-planar geometry with N2O2 chromofore group.  相似文献   

11.
Protein-CMC films were made by casting a solution of myoglobin (Mb) or hemoglobin (Hb) and carboxymethyl cellulose (CMC) on pyrolytic graphite electrodes. In pH 7.0 buffers, Mb and Hb incorporated in CMC films gave a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about -0.34 V vs. SCE, respectively, characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as apparent standard heterogeneous electron transfer rate constants (k(s)) and formal potentials (E degrees ') were estimated by square wave voltammetry with nonlinear regression analysis. In aqueous solution, stable CMC films absorbed large amounts of water and formed hydrogel. Scanning electron microscopy of the films showed that interaction between Mb or Hb and CMC would make the morphology of dry protein-CMC films different from the CMC films alone. Positions of Soret absorbance band suggest that Mb and Hb in CMC films retain their secondary structure similar to the native states in the medium pH range. Trichloroacetic acid, nitrite, oxygen, and hydrogen peroxide were catalytically reduced at protein-CMC film electrodes.  相似文献   

12.
Electroactive nickel(II) hexacyanoferrate (NiHCF) thin film modified electrodes are effective potentiometric sensors for the determination of potassium ions. The NiHCF films are deposited onto glassy carbon electrodes by repetitive potential cycling in K(3)Fe(CN)(6)/NaNO(3)/Ni(NO(3))(2) solution. The modified electrodes exhibit a linear response to potassium ions in the concentration range 1x10(-3) to 2.0 mol dm(-3), with a near-Nernstian slope (45-49 mV per decade) at 25 degrees C. In the determination of potassium ion in syrups used for treatment of potassium deficiency, the NiHCF-modified electrode gave comparable results to those obtained using flame emission spectrophotometry.  相似文献   

13.
Single crystal EPR studies on Cu(II) doped paramagnetic host lattices, hexaimidazole M(II) dichloride tetrahydrate (M=Co and Ni), isomorphous with M=Zn, have been carried out from room temperature to 77K to understand the nature of Jahn-Teller (JT) distortion in these paramagnetic host systems. The paramagnetic impurity, doped in the present two paramagnetic host lattices, shows anisotropic EPR spectra with superhyperfine from ligands, even at room temperature. An interesting observation noticed in the EPR spectra at room temperature is that there are more resonances corresponding to the second site in the paramagnetic hosts than in the diamagnetic host at 4.2K. This difference in behavior between the diamagnetic and paramagnetic host lattices indicates a change in the depth of the JT valleys. The spin Hamiltonian parameters are evaluated for Cu(II) ion in both the host lattices and the relaxation times have been calculated for the ion in cobalt host lattice only.  相似文献   

14.
15.
An electron-rich nickel(I) beta-diketiminate cleaves the E-NO bond of O-, S-, and N-organonitroso species to give the nickel nitrosyl [Me 3NN]NiNO along with dimeric nickel(II) alkoxide or thiolate complexes {[Me 3NN]Ni} 2(mu-E) 2 or the mononuclear nickel(II) amide [Me 3NN]NiNPh 2. This diamagnetic three-coordinate amide exhibits temperature-dependent NMR spectra due to a low-lying triplet state.  相似文献   

16.
A strong influence of bromide ion was found on voltammetry of layered films of photosynthetic reaction center (RC) protein and polyions on gold electrodes. Similar, but not identical, cyclic voltammetry peaks were observed for polyion films on gold with and without RC when the buffer solutions contained bromide ion. CVs of RC films were quite different in the absence of bromide. These new findings suggest that previously published results were biased by significant background peaks involving bromide ion adsorption/desorption.  相似文献   

17.
Stable thin films made from dimyristoyl phosphatidylcholine (DMPC) with incorporated hemoglobin (Hb) on pyrolytic graphite (PG) electrodes were characterized by electrochemical and other techniques. Cyclic voltammetry (CV) of Hb-DMPC films showed a pair of well-defined and nearly reversible peaks at about -0.27 V vs. saturated calomel electrode (SCE) at pH 5.5, characteristic of Hb heme Fe(III)/Fe(II) redox couple. The electron transfer between Hb and PG electrodes was greatly facilitated in DMPC films. Apparent heterogeneous rate constants (ks) were estimated by fitting square wave voltammograms of Hb-DMPC films to a model featuring thin layer behavior and dispersion of formal potentials for redox center. The formal potential of Hb heme Fe(III)/Fe(II) couple in DMPC films shifted linearly between pH 4.5 to 11 with a slope of -48 mV pH-1, suggesting that one proton is coupled to each electron transfer in the electrochemical reaction. Soret absorption band positions suggest that Hb retains a near native conformation in DMPC films at medium pH. Differential scanning calorimetry (DSC) showed the phase transition for DMPC and Hb-DMPC films, suggesting DMPC has an ordered multibilayer structure. Trichloroacetic acid (TCA) was catalytically reduced by Hb-DMPC films with significant decreases in the electrode potential required.  相似文献   

18.
The three diamagnetic square planar complexes of nickel(II), palladium(II), and platinum(II) containing two S,S-coordinated 3,5-di-tert-butylbenzene-1,2-dithiolate ligands, (L(Bu))(2-), namely [M(II)(L(Bu))(2)](2-), have been synthesized. The corresponding paramagnetic monoanions [M(II)(L(Bu))(L(Bu)(*))](-) (S = (1)/(2)) and the neutral diamagnetic species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt) have also been generated in solution or in the solid state as [N(n-Bu)(4)][M(II)(L(Bu))(L(Bu)(*))] salts. The corresponding complex [Cu(III)(L(Bu))(2)](-) has also been investigated. The complexes have been studied by UV-vis, IR, and EPR spectroscopy and by X-ray crystallography; their electro- and magnetochemistry is reported. The electron-transfer series [M(L(Bu))(2)](2-,-,0) is shown to be ligand based involving formally one (L(Bu)(*))(-) pi radical in the monoanion or two in the neutral species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt). Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic spectra. For the three neutral species a detailed analysis of the orbital structures reveals that the species may best be described as containing two strongly antiferromagnetically interacting ligand radicals. Furthermore, multiconfigurational ab initio calculations using the spectroscopy oriented configuration interaction (SORCI) approach including the ZORA correction were carried out. The calculations predict the position of the intervalence charge-transfer band well. Chemical trends in the diradical characters deduced from the multiconfigurational singlet ground-state wave function along a series of metals and ligands were discussed.  相似文献   

19.
Turnover frequencies of catalytic systems based on nickel complexes with 1,4-diaza-1,3-butadiene (α-diimine) ligands in the reactions of styrene hydrogenation and ethylene polymerization were determined. Results are presented of a study by the electron paramagnetic resonance method and IR spectroscopy of 1,4-diaza-1,3-butadiene complexes of nickel(II) and anion radicals formed in the interaction of the starting components under the conditions of catalysis. It was shown that the paramagnetic Ni(I) complexes are precursors of complexes catalytically active in the hydrogenation and polymerization reactions.  相似文献   

20.
Stable films made from ionomer poly(ester sulfonic acid) or Eastman AQ29 on pyrolytic graphite (PG) electrodes gave direct electrochemistry for incorporated enzyme horseradish peroxidase (HRP). Cyclic voltammetry of HRP-AQ films showed a pair of well-defined, nearly reversible peaks at about -0.33 V vs. SCE at pH 7.0 in blank buffers, characteristic of HRP heme Fe(III)/Fe(II) redox couple. The electron transfer between HRP and PG electrode was greatly facilitated in AQ films. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry (SWV) with nonlinear regression analysis. Reflectance absorption infrared (RAIR) and UV-Vis absorption spectra demonstrated that HRP retained a near native conformation in AQ films. The embedded HRP in AQ films retained the electrocatalytic activity for oxygen, nitrite and hydrogen peroxide. Possible mechanism of catalytic reduction of H(2)O(2) with HRP-AQ films was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号