首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparative high‐speed counter‐current chromatography (HSCCC) was successfully applied to the isolation and purification of three stilbene oligomers from Vitis chunganeniss using stepwise elution with a pair of two‐phase solvent systems composed of n‐hexane–ethyl acetate–methanol–water at (2:5:2:5, v/v) and (1:2:1:2, v/v). The preparative HSCCC separation was performed on 800 mg of crude sample yielding hopeaphenol (21.1 mg), amurensin G (37.2 mg) and vitisin A (95.6 mg) in a one‐step separation, with purities over 95% as determined by HPLC. The structures of these three compounds were identified by MS, 1H NMR and 13C NMR. In addition, their antioxidant activities were screened by DPPH assay, where vitisin A showed strong antioxidant activity. Further EPR experiments with spin‐trapping technique demonstrated that vitisin A is a potent and selective singlet oxygen quencher, which may be used in singlet oxygen‐mediated diseases as a pharmacological agent.  相似文献   

2.
Enrichment of the anti‐tumor compound barbigerone along with a rotenoid derivative from Millettia pachycarpa Benth. was performed by a two‐step high‐speed counter‐current chromatography (HSCCC) separation process. In the first step, 155.8 mg of target fraction (Fra6) was obtained from 400 mg ethyl acetate extract of M. pachycarpa Benth. with an increase in barbigerone from 5.1 to 13% via HSCCC using a solvent system of n‐hexane–ethyl acetate–methanol–water (5:4:5:3, v/v) under normal phase head to tail elution. HSCCC was repeated to eliminate the major contaminant in this initial fraction 6. After a separation time of 65 min, 22.1 mg barbigerone of 87.7% purity was obtained from Fra6 with the ternary solvent system of n‐hexane–methanol–water (2:2:1, v/v) under normal phase elution. Finally, preparative HPLC was employed for the further isolation of barbigerone and the rotenoid derivative. The structures were confirmed by ESI‐MS, 1H NMR and 13C NMR.  相似文献   

3.
In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high‐speed counter‐current chromatography (HSCCC). A two‐phase solvent system containing chloroform/n‐butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280‐mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC.  相似文献   

4.
Five phenylethanoid glycosides (PhGs), forsythoside B, verbascoside, alyssonoside, isoverbascoside, and leucosceptoside B, were isolated and purified from Lamiophlomis rotata (Benth.) Kudo by high‐speed counter‐current chromatography (HSCCC) combined with macroporous resin (MR) column separation. In the present study, the two‐phase solvent system composed of ethyl acetate/n‐butanol/water (13:3:10, v/v/v) was used for HSCCC separation. A total of 27 mg of forsythoside B, 41 mg of verbascoside, 29 mg of alyssonoside, 23 mg of isoverbascoside, and 13 mg of leucosceptoside B with purities of 97.7, 99.2, 99.5, 99.3, and 97.3%, respectively, were obtained in a one‐step separation within 4 h from 150 mg of crude extract. The recoveries of the five PhGs after MR‐HSCCC separation were 74.5, 76.5, 72.5, 76.4, and 77.0%, respectively. The chemical structures of all five compounds were identified by 1H and 13C NMR spectroscopy.  相似文献   

5.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

6.
Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal‐phase thin‐layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high‐speed counter‐current chromatography (HSCCC) with a solvent system composed of n‐hexane–ethyl acetate–methanol–water–acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high‐performance liquid chromatography (HPLC) and their structures were identified by 1H nuclear magnetic resonance (NMR) and 13C NMR analysis.  相似文献   

7.
Niu L  Xie Z  Cai T  Wu P  Xue P  Chen X  Wu Z  Ito Y  Li F  Yang F 《Journal of separation science》2011,34(9):987-994
High‐speed counter‐current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two‐phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12‐hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H‐NMR, 13C‐NMR, and LC‐ESI‐Q‐TOF‐MS/MS analyses.  相似文献   

8.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

9.
An efficient strategy for extracting and separating five lignans from Schisandra chinensis (Turcz.) Baill has been developed using supercritical fluid extraction (SFE) and high‐speed counter‐current chromatography (HSCCC) in the present study. First, the extraction was performed by a preparative SFE system under 15 MPa of pressure at 36°C for 4 h. Then, the SFE extract was successfully separated and purified by HSCCC with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water (6:4:5:5, 6:4:6:4, 6:4:8:2, v/v) in a stepwise elution mode. The fractions were analyzed by HPLC, and the chemical structures of the products were identified by ESI‐MS and 1H NMR spectroscopy. As a result, a total of 12.5 mg of schisandrin at 98.0% purity, 7.1 mg of gomisin A at 98.1% purity, 1.8 mg of schisantherin B at 93.3% purity, 4.4 mg of deoxyschisandrin at 92.9% purity, and 6.8 mg of γ‐schisandrin at 89.1% purity were obtained from 300 mg crude extract in a one‐step purification.  相似文献   

10.
Resveratrol dimers belong to a group of compounds called stilbenes, which along with proanthocyanidins, anthocyanins, catechins, and flavonols are natural phenolic compounds found in grapes and red wine. Stilbenes have a variety of structural isomers, all of which exhibit various biological properties. Counter‐current chromatography with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water (2:5:4:5, v/v/v/v) was applied to isolate and purify stilbene from the stems of wine grape. Two isomers of resveratrol dimers trans‐ε‐viniferin and trans‐δ‐viniferin were obtained from the crude sample in a one‐step separation, with purities of 93.2 and 97.5%, respectively, as determined by high‐performance liquid chromatography. The structures of these two compounds were identified by 1H and 13C NMR spectroscopy. In addition, their antioxidant activities were assessed by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) assay. The antioxidant activities of trans‐δ‐viniferin were higher than that of trans‐ε‐viniferin in this model. This work demonstrated that counter‐current chromatography is a powerful and effective method for the isolation and purification of polyphenols from wine grape. Additionally, the DPPH radical assay showed that the isolated component trans‐δ‐viniferin exhibited stronger antioxidant activities than trans‐ε‐viniferin and a little bit weaker than vitamin E at the same concentration.  相似文献   

11.
A preparative high‐speed countercurrent chromatography method was successfully used for the isolation of five minor flavones from Polygonum cuspidatum flowers. Among them, three compounds were obtained from P. cuspidatum for the first time. A twin two‐phase solvent system composed of n‐hexane/ethyl acetate/ethanol/water (1:6:3:6, v/v/v/v) and petroleum ether/ethyl acetate/methanol/water (2:4:3:3, v/v/v/v) was developed. Compounds were obtained from the fraction B and fraction C prepurified by silica gel column chromatography. Five minor compositions, 6.8 mg of hesperidin, 11.2 mg of phloridzin, 4.9 mg of luteolin, 5.3 mg of hyperin, and 3.7 mg of luteoloside were obtained from 140 mg of the fraction B and 110 mg of fraction C with a purity of 95.3, 96.4, 98.0, 96.8, and 95.3%, respectively, as determined by high‐performance liquid chromatography. The structures of these compounds were identified by 1H and 13C NMR spectroscopy.  相似文献   

12.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

13.
This study presents an efficient strategy for separation of three phenolic compounds with high molecular weight from the crude extract of Terminalia chebula Retz. by ultrasound‐assisted extraction and high‐speed counter‐current chromatography. The ultrasound‐assisted extraction conditions were optimized by response surface methodology and the results showed the target compounds could be well enriched under the optimized extraction conditions. Then the crude extract was directly separated by high‐speed counter‐current chromatography without any pretreatment using n‐hexane/ethyl acetate/methanol/water (1:7:0.5:3, v/v/v/v) as the solvent system. In 180 min, 13 mg of A, 18 mg of B, and 9 mg of C were obtained from 200 mg of crude sample. Their structures were identified as Chebulagic acid (A, 954 Da), Chebulinic acid (B, 956 Da), and Ellagic acid (C) by 1H NMR spectroscopy.  相似文献   

14.
Ganoderic acid S, ganoderic acid T and ganoderal B are the main bioactive triterpenes of Ganoderma lucidum. In this study, mycelia of G. lucidum were obtained by two‐stage fermentation and then extracted by ethanol and petroleum ether sequentially to obtain crude triterpenes. The crude sample was further purified by recycling high‐speed counter‐current chromatography with n‐hexane–ethyl acetate–methanol–water (7:12:11:5, v/v/v/v) as the optimized two‐phase solvent system. A 16.4 mg aliquot of ganoderol B with a purity of 90.4% was separated from 300 mg of the crude sample in a single run. After employing the recycling elution mode of HSCCC with n‐hexane–ethyl acetate–methanol–water (6:10:8:4.5, v/v/v/v) for five cycles, 25.7 mg ganoderic acid T and 3.7 mg ganoderic acid S with purities of 97.8 and 83.0%, respectively, were obtained. The purities of three compounds were determined by high‐performance liquid chromatography and their chemical structures were identified by NMR and MS data.  相似文献   

15.
In order to provide the chemical markers for the quality control of herbal medicines, four diterpenoids, pseudolaric acids A and B (PAA and PAB), and their glucosides were isolated from the methanol extract of the Chinese herb Pseudolarix kaempferi using high‐speed counter‐current chromatography (HSCCC). The diphase solvent system was n‐hexane/EtOAc/MeOH/H2O which was used at two ratios (5:5:5:5 and 1:9:4:6 by volume) in the separation of pseudolaric acids and their glycosides, respectively. As a result, PAA (14 mg), PAB (129 mg), PAA‐O‐β‐D ‐glucopyranoside (8 mg, PAAG), and PAB‐O‐β‐D ‐glucopyranoside (42 mg, PABG) were obtained from 0.5 g of the crude extract. Their purities were determined to be above 97% by HPLC analysis. Their chemical structures were confirmed by 1H and 13C NMR analysis or HPLC comparison with the reference compounds.  相似文献   

16.
A preparative high‐speed counter‐current chromatography method for isolation and purification of flavonoid compounds from Oroxylum indicum was successfully established by using ionic liquids as the modifier of the two‐phase solvent system. Two flavonoid compounds including baicalein‐7‐O‐diglucoside and baicalein‐7‐O‐glucoside were purified from the crude extract of O. indicum by using ethyl acetate–water–[C4mim][PF6] (5:5:0.2, v/v) as two‐phase solvent system. 36.4 mg of baicalein‐7‐O‐diglucoside and 60.5 mg of baicalein‐7‐O‐glucoside were obtained from 120 mg of the crude extract. Their purities were 98.7 and 99.1%, respectively, as determined by HPLC area normalization method. The chemical structures of the isolated compounds were identified by 1H‐NMR and 13C‐NMR.  相似文献   

17.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

18.
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker‐Gawler. The optimization of parameters was carried out using an orthogonal test L9 (3)4 including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55°C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high‐speed counter‐current chromatography (HSCCC) with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6‐aldehydo‐isoophiopogonone A, and 6‐formyl‐isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6‐aldehydo‐isoophiopogonone A (98.3% purity) and 13.5 mg of 6‐formyl‐isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI‐MS and NMR analysis.  相似文献   

19.
In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high‐speed counter‐current chromatography were applied to separate and purify the caryophyllene oxide, 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two‐phase solvent system containing n‐hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high‐speed counter‐current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC‐MS, 1H‐NMR, and 13C‐NMR.  相似文献   

20.
Some highly polar compounds are quality control makers for medicinal herbs. However, investigation of them has been hampered because the existing fractionation steps are difficult and laborious to purify them. Similar situations happen to Rhizoma Polygonatum Odorati, a widely used food supplement and medicinal herb with strong antioxidant activity, and up to date, only ethyl acetate fraction of Rhizoma Polygonatum Odorati has been comprehensively investigated. Here, HSCCC using a hydrophilic solvent system composed of n-butanol–ethanol–2 M ammonium sulfate (1:1:2, v/v/v) was performed to isolate highly polar antioxidants in n–butanol fraction of Rhizoma Polygonatum Odorati, guided by DPPH–HPLC experiment. Afterward, Sephadex LH-20 column chromatography eluted by methanol was selected to eliminate ammonium sulfate and purify co-eluted compounds in HSCCC collected fractions. Finally, nine compounds, including four nucleosides, cytidine (1), uridine (4), guanosine (5), and adenosine (8); two nucleobases, guanine (3), and adenine (6); and three amino acids, tyrosine (2), phenylalanine (7), and tryptophan (9) with purities over 98% were achieved and identified by UV, MS, and 1H NMR data. Notably, compounds 19 were first reported in genus Polygonatum. The results indicated that the proposed method was an efficient approach to isolate and purify highly polar compounds from complex extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号