首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Enrichment of the anti‐tumor compound barbigerone along with a rotenoid derivative from Millettia pachycarpa Benth. was performed by a two‐step high‐speed counter‐current chromatography (HSCCC) separation process. In the first step, 155.8 mg of target fraction (Fra6) was obtained from 400 mg ethyl acetate extract of M. pachycarpa Benth. with an increase in barbigerone from 5.1 to 13% via HSCCC using a solvent system of n‐hexane–ethyl acetate–methanol–water (5:4:5:3, v/v) under normal phase head to tail elution. HSCCC was repeated to eliminate the major contaminant in this initial fraction 6. After a separation time of 65 min, 22.1 mg barbigerone of 87.7% purity was obtained from Fra6 with the ternary solvent system of n‐hexane–methanol–water (2:2:1, v/v) under normal phase elution. Finally, preparative HPLC was employed for the further isolation of barbigerone and the rotenoid derivative. The structures were confirmed by ESI‐MS, 1H NMR and 13C NMR.  相似文献   

2.
Preparative high‐speed counter‐current chromatography (HSCCC) was successfully applied to the isolation and purification of three stilbene oligomers from Vitis chunganeniss using stepwise elution with a pair of two‐phase solvent systems composed of n‐hexane–ethyl acetate–methanol–water at (2:5:2:5, v/v) and (1:2:1:2, v/v). The preparative HSCCC separation was performed on 800 mg of crude sample yielding hopeaphenol (21.1 mg), amurensin G (37.2 mg) and vitisin A (95.6 mg) in a one‐step separation, with purities over 95% as determined by HPLC. The structures of these three compounds were identified by MS, 1H NMR and 13C NMR. In addition, their antioxidant activities were screened by DPPH assay, where vitisin A showed strong antioxidant activity. Further EPR experiments with spin‐trapping technique demonstrated that vitisin A is a potent and selective singlet oxygen quencher, which may be used in singlet oxygen‐mediated diseases as a pharmacological agent.  相似文献   

3.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

4.
Ganoderic acid S, ganoderic acid T and ganoderal B are the main bioactive triterpenes of Ganoderma lucidum. In this study, mycelia of G. lucidum were obtained by two‐stage fermentation and then extracted by ethanol and petroleum ether sequentially to obtain crude triterpenes. The crude sample was further purified by recycling high‐speed counter‐current chromatography with n‐hexane–ethyl acetate–methanol–water (7:12:11:5, v/v/v/v) as the optimized two‐phase solvent system. A 16.4 mg aliquot of ganoderol B with a purity of 90.4% was separated from 300 mg of the crude sample in a single run. After employing the recycling elution mode of HSCCC with n‐hexane–ethyl acetate–methanol–water (6:10:8:4.5, v/v/v/v) for five cycles, 25.7 mg ganoderic acid T and 3.7 mg ganoderic acid S with purities of 97.8 and 83.0%, respectively, were obtained. The purities of three compounds were determined by high‐performance liquid chromatography and their chemical structures were identified by NMR and MS data.  相似文献   

5.
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker‐Gawler. The optimization of parameters was carried out using an orthogonal test L9 (3)4 including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55°C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high‐speed counter‐current chromatography (HSCCC) with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6‐aldehydo‐isoophiopogonone A, and 6‐formyl‐isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6‐aldehydo‐isoophiopogonone A (98.3% purity) and 13.5 mg of 6‐formyl‐isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI‐MS and NMR analysis.  相似文献   

6.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

7.
Four flavonoids, isoastilbin, astilbin, isoengelitin, and engelitin were isolated and purified simultaneously from Smilacis Glabrae Roxb. for the first time by high performance counter‐current chromatography using a system consisting of n‐hexane–n‐butanol–water (1:2:3, v/v/v). A total of 392.6 mg of astilbin, 71.4 mg of isoastilbin, 47.4 mg of engelitin, and 10.3 mg of isoengelitin were purified from 1.89 g of the ethyl acetate extract of Smilacis Glabrae Roxb. in six runs, each at over 94.51% purity as determined by HPLC. The structures of the four compounds were identified by their retention time, the LC‐ESI‐MSn in the negative ion mode, and confirmed by 1H‐NMR experiments. The characteristic LC‐ESI‐MS fragmentation patterns of the four compounds were discussed.  相似文献   

8.
An efficient strategy for extracting and separating five lignans from Schisandra chinensis (Turcz.) Baill has been developed using supercritical fluid extraction (SFE) and high‐speed counter‐current chromatography (HSCCC) in the present study. First, the extraction was performed by a preparative SFE system under 15 MPa of pressure at 36°C for 4 h. Then, the SFE extract was successfully separated and purified by HSCCC with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water (6:4:5:5, 6:4:6:4, 6:4:8:2, v/v) in a stepwise elution mode. The fractions were analyzed by HPLC, and the chemical structures of the products were identified by ESI‐MS and 1H NMR spectroscopy. As a result, a total of 12.5 mg of schisandrin at 98.0% purity, 7.1 mg of gomisin A at 98.1% purity, 1.8 mg of schisantherin B at 93.3% purity, 4.4 mg of deoxyschisandrin at 92.9% purity, and 6.8 mg of γ‐schisandrin at 89.1% purity were obtained from 300 mg crude extract in a one‐step purification.  相似文献   

9.
In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high‐speed counter‐current chromatography (HSCCC). A two‐phase solvent system containing chloroform/n‐butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280‐mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC.  相似文献   

10.
Ansamitocin P‐3 is a potent anti‐tumor maytansinoid found in Actinosynnema pretiosum. However, due to the complexity of the fermentation broth of Actinomycete, how to effectively separate ansamitocin P‐3 is still a challenge. In this study, both analytical and preparative high‐performance counter‐current chromatography were successfully used to separate and purify ansamitocin P‐3 from fermentation broth. A total of 28.8 mg ansamitocin P‐3 with purity of 98.4% was separated from 160 mg crude sample of fermentation broth in less than 80 min with the two‐phase solvent system of hexane–ethyl acetate–methanol–water (0.6:1:0.6:1, v/v/v/v). The purity and structural identification were determined by HPLC, 1H NMR, 13C NMR and mass spectroscopy.  相似文献   

11.
In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high‐speed counter‐current chromatography were applied to separate and purify the caryophyllene oxide, 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two‐phase solvent system containing n‐hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high‐speed counter‐current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC‐MS, 1H‐NMR, and 13C‐NMR.  相似文献   

12.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

13.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

14.
In this article, an efficient method was developed to screen, isolate and identify the major radical scavengers in the leaves of Olea europaea L. by DPPH‐HPLC‐DAD, HSCCC and NMR. The method of DPPH‐HPLC‐DAD was used to screen the major radical scavengers. It was found that three major constituents (A, B, C) in the extract of the leaves of O. europaea L. possessed potential antioxidant activities. In order to identify the chemical structures of those compounds, the HSCCC method with a two‐phase solvent system composed of petroleum ether–ethyl acetate–water at an optimized volume ratio of 6:600:700 (v/v/v) together with column chromatography was developed to isolate and purify the active compounds. Pure compounds A (225 mg), B (10 mg) and C (12 mg) with purities 92.6, 95.1 and 96.4%, respectively, were obtained from the crude sample (500 mg). Their structures were identified as oleuropein (A), luteolin‐7‐O‐glucoside (B) and verbascoside (C) by 1H‐NMR and 13C‐NMR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A consecutive preparation method based upon accelerated solvent extraction (ASE) coupled with high‐speed counter‐current chromatography (HSCCC) was presented and aesculin was obtained from Cortex fraxinus. The extraction condition of ASE was optimized with response surface methodology; some significant parameters such as the solvent system and its stability, the amount of loading sample in HSCCC were also investigated. The original sample was first extracted with methanol at 105°C and 104 bar for 7 min using ASE, then the extracts were consecutively introduced into the HSCCC system and separated and purified with the same ethyl acetate/n‐butanol/water (7:3:10, v/v/v) solvent system for five times without further exchange and equilibrium. About 3.1 ± 0.2 mg/g in each time and total of 15.4 mg/g aesculin with purity over 95% was isolated from Cortex fraxinus. The results demonstrated that the consecutive preparation method was time and solvent saving and high throughput, it was suitable for isolation of aesculin from Cortex fraxinus, and also has good potential on the separation and purification of effective compounds from natural product.  相似文献   

16.
Niu L  Xie Z  Cai T  Wu P  Xue P  Chen X  Wu Z  Ito Y  Li F  Yang F 《Journal of separation science》2011,34(9):987-994
High‐speed counter‐current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two‐phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12‐hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H‐NMR, 13C‐NMR, and LC‐ESI‐Q‐TOF‐MS/MS analyses.  相似文献   

17.
An off‐line 2D high‐speed counter‐current chromatography technique in preparative scale has been successfully applied to separate and purify the main compounds from the ethyl acetate extract of Desmodium styracifolium. A two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water at an optimized volume ratio of 1:2:1:2 v/v/v/v was used. Conventional high‐speed counter‐current chromatography was used as the first dimension, and the upper phase of the solvent system was used as the stationary phase in the head‐to‐tail elution mode at a flow rate of 2.0 mL/min and a rotation speed of 900 rpm. Recycling high‐speed counter‐current chromatography served as the second dimension to separate an impure fraction of the first dimension. A total of four well‐separated substances including vanillic acid ( 1 ), β‐sitosterol ( 2 ), formononetin ( 3 ), and aromadendrin ( 4 ) were obtained, and their purities and structures were identified by HPLC–MS and 1H NMR spectroscopy. The results illustrated that off‐line 2D high‐speed counter‐current chromatography is an effective way to isolate compounds in complex samples.  相似文献   

18.
In the present work, a rapid and sensitive ultra performance liquid chromatography‐mass spectrometry method has been proposed for the analysis of capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin) present in different Capsicum samples. Extraction of capsaicinoids was carried out by liquid–liquid extraction using ethanol as an extracting solvent, while the chromatographic separation was achieved by reversed phase C18 column with gradient mobile phase (solvent A: acetonitrile and solvent B: water with 0.1% formic acid). Under the optimum experimental conditions, the linear ranges were 0.5–50 μg/g with correlation coefficient (r2) >0.999 for each capsaicinoids and detection limits were 0.15, 0.05, 0.06, 0.2, and 0.1 μg/g for nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin, respectively. Run‐to‐run and day‐to‐day precisions of the method with relative standard deviations <1.5% were achieved for all analyzed capsaicinoids. The robustness of the method was determined by utilizing different injection volumes of the extracts. Furthermore, to validate the system robustness, a run of high number of capsaicinoids present in different varieties of Capsicum samples was performed in this study. All the capsaicinoids were separated in a time of less than 9 min by employing the proposed method.  相似文献   

19.
Stilbenoids are the main components of leaves and stems of Pholidota chinensis. In the present investigation, high‐speed counter‐current chromatography was used for the separation and purification of two classes of stilbenoids, namely, bibenzyls and 9,10‐dihydrophenanthrenes, on a preparative scale from whole plants of P. chinensis with different solvent systems after silica gel column chromatography fractionation. n‐Hexane/ethyl acetate/methanol/water (1.2:1:1:0.8, v/v/v/v) was selected as the optimum solvent system to purify 1‐(3,4,5‐trimethoxyphenyl)‐1′,2′‐ethanediol ( 1 ), coelonin ( 2 ), 3,4′‐dihydroxy‐5,5′‐dimethoxybibenzyl ( 3 ), and 2,?7‐?dihydroxy‐?3,?4,?6‐?trimethoxy‐?9,?10‐?dihydrophenanthrene ( 4 ). While 2,7‐dihydroxy‐3,4,6‐trimethoxy‐?9,?10‐?dihydrophenanthrene ( 5 ), batatasin III ( 6 ), orchinol ( 7 ), and 3′‐O‐methylbatatasin III ( 8 ) were purified by n‐hexane/ethyl acetate/methanol/water (1.6:0.8:1.2:0.4, v/v/v/v). After the high‐speed counter‐current chromatography isolation procedure, the purity of all compounds was over 94% assayed by ultra high performance liquid chromatography. The chemical structure identification of all compounds was carried out by mass spectrometry and 1H and 13C NMR spectroscopy. To the best of our knowledge, the current investigation is the first study for the separation and purification of bibenzyls and 9,10‐dihydrophenanthrenes by high‐speed counter‐current chromatography from natural resources.  相似文献   

20.
Five phenylethanoid glycosides (PhGs), forsythoside B, verbascoside, alyssonoside, isoverbascoside, and leucosceptoside B, were isolated and purified from Lamiophlomis rotata (Benth.) Kudo by high‐speed counter‐current chromatography (HSCCC) combined with macroporous resin (MR) column separation. In the present study, the two‐phase solvent system composed of ethyl acetate/n‐butanol/water (13:3:10, v/v/v) was used for HSCCC separation. A total of 27 mg of forsythoside B, 41 mg of verbascoside, 29 mg of alyssonoside, 23 mg of isoverbascoside, and 13 mg of leucosceptoside B with purities of 97.7, 99.2, 99.5, 99.3, and 97.3%, respectively, were obtained in a one‐step separation within 4 h from 150 mg of crude extract. The recoveries of the five PhGs after MR‐HSCCC separation were 74.5, 76.5, 72.5, 76.4, and 77.0%, respectively. The chemical structures of all five compounds were identified by 1H and 13C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号