首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemiluminescence method for the determination of folic acid by the sodium hypochlorite–folic acid–semicarbazide hydrochloride system with a new flow injection technique has been established. The new method can perform simple, sensitive and rapid determinations of folic acid. The response to the concentration of folic acid, in the range of 1.0×10−75.0×10−5 g/ml, is linear. The relative standard deviation of the method is 2.3% (Cs=4.0×10−6 g/ml, n=11). The detection limit is 2.7×10−8 g/ml. This method is suitable for automatic and continuous analysis, and has been successfully tested for the determination of folic acid in a folic acid tablet.  相似文献   

2.
On the basis of enhancement of resonance light scattering (RLS) of copper phthalocyanine tetrasulfonic acid (CuTSPc) by nucleic acids and cetyltrimethylammonium bromide (CTMAB) under suitable conditions, a new RLS method for determination of nucleic acids in aqueous solutions has been developed. At pH 9.80–10.95 and ionic strength 0.01 mol L–1 (NaCl), the interaction of copper phthalocyanine tetrasulfonic acid with nucleic acids in the presence of cetyltrimethylammonium bromide results in enhanced RLS signals at 282.0 nm, 383.6 nm, and 616.2 nm in the enhanced regions. It was found that the enhanced RLS intensity at 383.6 nm was proportional to the concentration of nucleic acids within suitable ranges. The limits of detection were 10.6 ng mL–1 for fish sperm DNA and 32.4 ng mL–1 for calf thymus DNA when the concentration of copper phthalocyanine tetrasulfonic acid was 2.0×10–6 mol L–1. This method is rapid, simple and sensitive. In addition, the reagents used are relatively inexpensive, stable, and easily synthesised. The method can be applied to the determination of nucleic acids in the presence of coexisting substances, and we have applied it to the determination of DNA in synthetic samples, with satisfactory results.  相似文献   

3.
An indirect catalytic method for the separate microdetermination of oxalate, citrate, and fluoride ions is described. The method is based on the inhibition action of oxalate, citrate, and fluoride ions on the catalytic oxidation reaction of 2,4-diaminophenol-hydrogen peroxide by iron(III).Procedures for the determination of 1.76 × 10−2 to 17.6 × 10−2 μg/ml for oxalate ion, 3.78 × 10−2 to 30.24 × 10−2 μg/ml for citrate ion, and 0.38 to 4.18 μg/ml for fluoride ion are given.Quantities of 1.76 × 10−2 to 17.6 × 10−2 μg/ml for oxalate ion, 3.78 × 10−2 to 30.24 × 10−2 μg/ml for citrate ion, and 0.38 to 4.18 μg/ml for fluoride ion could be determinated with a relative error of about 1–3.5% for oxalate and citrate ions and 1–2% for fluoride ion.  相似文献   

4.
Yu F  Ding Y  Gao Y  Zheng S  Chen F 《Analytica chimica acta》2008,625(2):195-200
A new spectrofluorimetric method was developed for the determination of trace amounts of DNA using the calcein as a fluorescent probe. In the presence of appropriate amounts of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB), the anionic dye calcein dimerizes. The weak fluorescence intensity of the dimer was enhanced by adding DNA at pH 6–7. The interaction between calcein–CTAB and DNA was studied on the basis of this behavior and a new method was developed for determining DNA. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 4.0 × 10−6 to 8.0 × 10−5 g L−1 for fsDNA and thermally denatured ctDNA (4.5 × 10−6 to 9.0 × 10−5 g L−1). The detection limits (S/N = 3) were 2.0 × 10−6 and 2.2 × 10−6 g L−1, respectively. This method was used for determining the concentration of DNA in synthetic samples with satisfactory results.  相似文献   

5.
The voltammetric behavior of the LMF-Mg(II) complex with DNA at a mercury electrode is reported for the first time. In NH3–NH4Cl buffer (pH=9.10), the adsorption phenomena of the LMF–Mg(II) complex were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be a reduction of LMF in the complex, and the composition of the LMF–Mg(II) complex is 2:1. In the presence of calf thymus DNA (ctDNA), the peak current of LMF–Mg(II) complex decreased considerably, and a new well-defined adsorptive reduction peak appeared at −1.63 V (vs. SCE). The electrochemical kinetic parameters and the binding number of LMF–Mg(II) with ctDNA were also obtained. Moreover, the new peak currents of LMF–Mg(II)–DNA system increased linearly correlated to the concentration of DNA in the 4.00×10−7–2.60×10−6 g ml−1 range when the concentrations of LMF–Mg(II) complex was fixed at 5.00×10−6 mol l−1, with the detection limits of 2.33×10−7 g ml−1. An electrostatic interaction was suggested by electrochemical method.  相似文献   

6.
A rapid, simple and sensitive spectrofluorimetric method for determination of trace amount of bromazepam is developed. In phosphate buffer of pH 7.4. The bromazepam enhance the luminescence intensity of the Eu3+ ion in Eu3+–bromazepam complex at λex = 390 nm. The produced luminescence intensity of Eu3+–bromazepam complex is in proportion to the concentration of bromazepam. The working range for the determination of bromazepam is 2.3 × 10−8 to 6.2 × 10−7 M with detection limit (LoD) and quantitative detection limit (LoQ) of 3 × 10−9 and 1.2 × 10−8 M, respectively. While, the working range, detection limit (LoD) and quantitative detection limit (LoQ) in case of the quantum yield calculations are 3.7 × 10−8 to 3.4 × 10−7 M with of 3.4 × 10−9 and 9.2 × 10−8 M, respectively. The enhancement mechanism of the luminescence intensity in the Eu3+–bromazepam system has been also explained.  相似文献   

7.
Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0 x 10(-9) to 1.0 x 10(-6) g ml(-1), 7.5 x 10(-8) to 1.0 x 10(-6) g ml(-1) and 7.5 x 10(-8) to 2.5 x 10(-6) g ml(-1) for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml(-1) (S/N = 3), respectively. Actual biological samples were satisfactorily determined.  相似文献   

8.
A novel method for fabricating a nanoarray electrode combining the template technique with the self-assembled approach was developed. The glassy carbon electrode was modified with the Au nanoarray using micropores of aluminum anodic film as template. Then, the Au nanoarray electrode was self-assembled with L-cysteine (L-Cys) and gold colloid, respectively. In order to evaluate the electrochemical characteristics of L-Cys–Au colloid self-assembled nanoarray electrode, was chosen as molecule probe and cyclic voltammetry was used. In addition, the functional nanoarray electrode was applied to measuring dopamine (DA). The resulting L-Cys–Au colloid self-assembled nanoarray electrode demonstrated that the linear calibration range extended over three orders of magnitude of DA concentrations (1.0 × 10−9–1.0 × 10−6 mol/L) and the detection limit was 5.0 × 10−10 mol/L.  相似文献   

9.
Ionophoric, extraction, acidic and hydrophobic properties of 3-(4-tolylazo)phenylboronic acid (TAPBA) were studied. Determined Kd value equals to 36±2, pKa equals to 8.6±0.5. TAPBA extracts dobutamine from water into chloroform and transports it across a bulk chloroform membrane. The recovery is 83% (pH=7.5), the transport rate – (6.5±0.5)×10−7 mol/h. 1H and 13C NMR data confirm the formation of an 1:1 complex between arylboronic acid and catecholamine. TAPBA was used as electrode-active component of plasticized membrane electrodes with cationic and anionic responses to catecholamines and phenolic acids, respectively. For the diethyl sebacate-plasticized membrane, a slope of electrode function to dobutamine is 56±2 mV/decade; the detection limit is 1.3×10−5 mol/l; the linear range – 5×10−5–1×10−2 mol/l; the working pH-range – 4.8–7.6; the response time – 5–10 s. ISE gives incomplete cationic function to less lipophilic catecholamines. The membrane with cationic additive shows an anionic response to caffeic acid in wide pH range.  相似文献   

10.
In this study a PVC membrane electrode for determination of ketotifen fumarate is reported, where ketotifen tetraphenylborate (Keto-TPB) was used as ion exchanger. The electrode has linear range of 5.6 × 10− 6–1.0 × 10− 2 and 1.0 × 10− 5–1.0 × 10− 2 mol/L, with detection limits 2.37 × 10− 6and 4.60 × 10− 6 mol/L in batch and flow injection analysis (FIA), respectively. The electrodes show a Nernstian slope value (58.40 and 61.50 mV/decade in batch and FIA, respectively), and the response time is very short (≤ 10 s). The potential is nearly stable over the pH range 2.0–8.0. Selectivity coefficient values towards different inorganic cations, sugars and amino acids reflect high selectivity of the prepared electrodes. These are used for determination of Ketotifen using potentiometric titration and standard addition methods in pure samples and its pharmaceutical preparations (Zaditen tablets and syrup). The average recovery values are 99.5 and 99.2% with RSD 1.4 and 1.2% for potentiometric titrations and standard addition methods, respectively. The electrode response at different temperatures was also studied.  相似文献   

11.
Semiautomatic methods are described for the catalytic titrimetric determination of microamounts of silver and mercury(II) using a chloramine-T-selective electrode as monitor. The methods are based on the inhibitory effect of Ag(I) and Hg(II) on the iodide-catalyzed chloramine-T-arsenite and chloramine-T-H2O2 reactions. Microamounts of silver in the range 0.2–200 μg (1 × 10−7−1 × 10−4 M) and of mercury(II) in the range 0.1–200 μg (2.5 × 10−8−5 × 10−5 M) were determined using the chloramine-T-As(III) indicator reaction. Mercury(II) in the range 4–2000 μg (1 × 10−6−5 × 10−4 M) was also determined using the chloramine-T-H2O2 indicator reaction. The accuracy and precision were in the range 0.1–1%.  相似文献   

12.
A novel taurine modified glassy carbon electrode was prepared by electropolymerization method. The electrochemical behaviors of epinephrine (EP) and dopamine (DA) at the modified electrode were studied by cyclic voltammetry. The modified electrode exhibited enhanced sensitivity and excellent electrochemical discrimination to DA and EP. The cathodic peaks of the two species were well-separated with a potential difference of about 390 mV, so the poly(taurine) modified electrode was used for simultaneous voltammetric measurement of EP and DA by differential pulse voltammetry. Under the optimum conditions, the cathodic peak currents were linear to concentrations of EP and DA in the range of 2.0 × 10−6 to 6.0 × 10−4 mol L−1 and 1.0 × 10−6 to 8.0 × 10−4 mol L−1, respectively. The detection limits for EP and DA were 3.0 × 10−7 and 1.0 × 10−7 mol L−1, respectively. Because the oxidation of ascorbic acid (AA) is an irreversible reaction at modified electrode, the interference of AA for determining EP and DA was eliminated. The modified electrode has been satisfactorily used for the simultaneous determination of EP and DA in pharmaceutical injections.  相似文献   

13.
We use colloidal Au to enhance the DNA immobilization amount on a gold electrode and ultimately lower the detection limit of our electrochemical DNA biosensor. Self-assembly of approximately 16-nm diameter colloidal Au onto a cysteamine modified gold electrode resulted in an easier attachment of an oligonucleotide with a mercaptohexyl group at the 5′-phosphate end, and therefore an increased capacity for nucleic acid detection. Quantitative results showed that the surface densities of oligonucleotides on the Au colloid modified gold electrode were approximately (1–4)×1014 molecules cm−2. Hybridization was induced by exposure of the ssDNA-containing gold electrode to ferrocenecarboxaldehyde labeled complementary ssDNA in solution. The detection limit is 5×10−10 mol l−1 of complementary ssDNA, which is much lower than our previous electrochemical DNA biosensors. The Au nanoparticle films on the Au electrode provide a novel means for ssDNA immobilization and sequence-specific DNA detection.  相似文献   

14.
A poly-amidosulfonic acid and multi-wall carbon nanotubes composite (PASA/MWNTs) modified electrode has been constructed by electropolymerization on glassy carbon electrode (GCE). The electrochemical behaviors of hydroquinone (HQ) and catechol (CC) were investigated using cyclic and differential pulse voltammetries (DPVs) at the prepared electrode. Separation of the reductive peak potentials for HQ and CC was about 120 mV in pH 6.0 phosphate buffer solution (PBS), which makes it suitable for simultaneous determination of these compounds. In the presence of 1.0 × 10−4 mol L−1 isomer, the reductive peak currents of DPV are proportional to the concentration of HQ in the range of 6.0 × 10−6 to 4.0 × 10−4 mol L−1, and to that of CC in the range of 6.0 × 10−6 to 7.0 × 10−4 mol L−1. When simultaneously changing the concentration of both HQ and CC, the linear concentration range of HQ (or CC) is 6.0 × 10−6 to 1.0 × 10−4 mol L−1 (or 6.0 × 10−6 to 1.8 × 10−4 mol L−1), and the corresponding detection limits are 1.0 × 10−6 mol L−1. The proposed method has been applied to simultaneous determination of HQ and catechol in water sample, and the results are satisfactory.  相似文献   

15.
A reaction rate method is described for the microdetermination of iron. The method is based on the catalytic action of iron on the reaction of 2,4-diaminophenol with hydrogen peroxide. The effect of reagent concentration is studied and the maximum tolerable amounts of interfering ions are determined. Procedures for the determination of 2.8 × 10−3 to 2.8 × 10−2 μg/ml are given.Quantities of 2.8 × 10−3 to 2.8 × 10−2 μg/ml could be determinated with a relative error of about 2%.  相似文献   

16.
Herein, a novel electrochemical method was developed for the determination of tryptophan based on the poly(4-aminobenzoic acid) film modified glassy carbon electrode (GCE). The electrochemical behaviors of tryptophan at the modified electrode were investigated. It was found that the oxidation peak current of tryptophan at the modified GCE was greatly improved compared with that at the bare GCE. The effects of supporting electrolyte, pH value, scan rate, accumulation potential and time were examined. The oxidation peak current of tryptophan was proportional to its concentration over the range from 1.0 × 10−6 to 1.0 × 10−4 mol L−1. The limit of detection was evaluated to be 2.0 × 10−7 mol L−1. The proposed method was sensitive and simple. It was successfully employed to determine tryptophan in pharmaceutical samples.  相似文献   

17.
A novel rapid flow injection method with chemiluminescence (CL) detection was established for the determination of ciprofloxacin (CPLX), which is an antibiotic commonly used. The method is based on CL of Ce(IV)–SO32− sensitized by Tb3+–CPLX, and showed the intensive bands characteristic of Tb3+ (5D47F5). The optimum conditions for CL emission were investigated. The linear relationship between the relative CL intensity and the concentration of CPLX is in the range of 9.0×10−9–1.0×10−6 mol/l with a detection limit of 3.1×10−10 mol/l. The relative standard deviation is 2.8% (n=11) for a level of 5.0×10−8 mol/l. The method was applied to the analysis of CPLX in human serum and urine samples with satisfactory results. The possible mechanism for this sensitized CL reaction is also discussed.  相似文献   

18.
A novel sensitive method for the determination of nucleic acid (DNA) using the resonance light scattering (RLS) spectra of pentamethoxyl red has been developed. It is based on the effects on the resonance light scattering of Pentamethoxyl Red. The effective factors and the optimum conditions were studied, and the enhanced intensity of RLS is in proportion to the concentration of nucleic acids in the range of 0–2.54 µg mL−1 for ct-DNA, 0–4.54 µg mL−1 for hs-DNA. The limits of detection are 1.1 and 2.1 ng mL−1, respectively. Most foreign substances do not interfere in the determination, and the method has good selectivity and high sensitivity. It has been applied to the determination of DNA in synthetic samples and in real samples with satisfactory results.  相似文献   

19.
Ascorbic acid is determined by a simple Bead Injection Spectroscopy–Flow Injection Analysis (BIS–FIA) system with spectrophotometric detection. The sensor is based on the decrease of absorbance obtained (720 nm) when Prussian blue (PB) is reduced by ascorbic acid. Commercial available flow-cell (Hellma 138-OS) is used and an appropriate volume of homogeneous bead suspension of Sephadex QAE A-25 was injected to fill this flow-cell for each measurement. The chromogenic reagent (PB) is injected into the carrier and immobilized on beads. When sample is injected, reaching the bead surface where PB is sorbed, ascorbic acid converts it to Prussian white form, which is transparent, producing the discoloration of the detection zone. At the end of the analysis, beads are discarded by reversing the flow and instantaneously transported out of the system.The calibration graph was linear over the range 5.1×10−6–6.8×10−5 M. The detection limit and RSD (%) were 4.5×10−7 M and 5.0%, respectively, using 800 μl of sample volume. This method is highly selective in the presence of other species that are normally encountered with the analyte. The sensor was applied satisfactorily to the determination ascorbic acid in fruit juices, pharmaceuticals, sweets and conservative liquids.  相似文献   

20.
Reproterol hydrochloride (RpCl), selective PVC membranes based on ion associates of reproterolium-phosphotungstate (Rp-PTA); reproterolium-phospho-molybdate (Rp-PMA) or a mixture of both (Rp-PTA/PMA) were prepared. The electrodes displayed a linear response over the concentration range of 6.3×10−6–1.0×10−1 mol dm−3 RpCl. The working pH ranges of the above electrodes were 2.5–9.0, 2.5–8.5 and 2.0–9.0 and their isothermal temperature coefficients were 0.00014, 0.00090 and 0.00103 V/°C, respectively. The electrodes showed good selectivity to the reproterolium ion with respect to many inorganic cations, sugars and amino acids. The standard additions and potentiometric titration methods were used to determine RpCl in pure solutions and in its pharmaceutical preparations with high accuracy and precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号