首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A natural silver foil was bombarded by 30 MeV α-particles which produced 111In, 109Cd and 106mAg in the target matrix. 111In and 109Cd were separated from the Ag target matrix employing ion-exchange chromatography and liquid–liquid extraction (LLX). In the chromatographic separation, the active solution containing the NCA products were adsorbed in the column containing Dowex 50 and were eluted with HNO3. Bulk silver and 109Cd were sequentially eluted with 1 M HNO3. After complete elution of 109Cd and the bulk, 111In was eluted with 1.5 M HNO3. In the LLX, the NCA 111In was extracted to 1 % HDEHP (di-2(ethylhexyl)phosphoric acid) from 10?2 M HNO3 solution, leaving cadmium and bulk silver quantitatively in the aqueous phase. The NCA 109Cd was separated from the bulk Ag by precipitating Ag as AgCl. NCA 111In was stripped back quantitatively from HDEHP phase using 8 M HNO3.  相似文献   

2.
《Analytical letters》2012,45(6):972-982
A new on-line cloud point extraction system coupled to inductively coupled plasma optical emission spectrometry was designed for simultaneous extraction, preconcentration and determination of trace amounts of platinum and palladium in platinum-palladium spent catalysts. This was based on the complexation of the metal ions with 1,8-diamino-4,5-bis(hydroxyamino)anthraquinone reagent in the presence of non-ionic surfactant of Triton X-114. After phase separation, the surfactant-rich phase was diluted with concentrated HNO3 (70%, w/w); the analytes concentrations were determined by inductively coupled plasma-optical emission spectrometry. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method were 35.4 and 29 for platinum and palladium, respectively. The detection limits were 0.3 and 0.45 µ g L?1. Finally, the developed method was successfully applied to the extraction and determination of platinum and palladium in platinum-palladium spent catalysts samples and satisfactory results were obtained.  相似文献   

3.
Sorption of Cd and Ag by a cation exchange resin has been studied at different molarities of nitric acid. The sorption capacity of Cd on a cation exchanger has been determined. A109Cd/109mAg generator is suggested, based on the sorption of Cd on AG 50W-X8 organic cation exchanger at 0.01M HNO3.109mAg is eluted with 0.2M NaCl, physiologically compatible for human use.  相似文献   

4.
A method for the determination of Hg in seawater by inductively coupled plasma mass spectrometry, after an on-line separation and pre-concentration, is described. The matrix separation was accomplished by retention of the Hg complex with the ammonium salt of O,O-diethyl dithiophosphoric acid on C18 immobilized on silica in a micro-column. Before pre-concentration, the seawater sample was acidified with HNO3 to 0.14 mol l−1. Methanol was used as the eluent, which was introduced into the conventional pneumatic nebulizer of the instrument. External calibration with aqueous analytical solutions, submitted to the same procedure, was used. An enhancement factor of 16 was obtained, and the limit of detection was 5 ng l−1. The sample consumption was 2.3 ml per determination, and the sampling frequency was 21 h−1. The accuracy was tested by comparison with vapor generation inductively coupled plasma mass spectrometry. The agreement between the Hg concentrations measured by the two methods in the seawater samples was good.  相似文献   

5.
A one step Cs, lanthanides (Ln), Pu and U separation using TRU resin (Eichrom), for subsequent isotopic analyses, is presented for samples of transmutation targets containing a predominant matrix of steel elements. Cs, Ln, Pu and U are successively eluted using minor volumes (<12 mL) of 2M HNO3, 4M HCl, 0.075M oxalic acid in 1M HCl media and 0.1M ammonium hydrogen oxalate in 0.02M HNO3 media, respectively. Accurate and precise isotopic compositions obtained for these elements by thermal ionization mass spectrometry or multiple collector inductively coupled mass spectrometry show neither significant fractionation nor contamination during the complete analytical process.  相似文献   

6.
ABSTRACT

A simple and reliable analytical method using instrumentation available in most of the laboratories has been developed for the separation and determination of silver nanoparticles in water samples. Cloud point extraction (CPE) was used for the separation of silver nanoparticles (AgNPs) from the sample and these nanoparticles were then determined by electrothermal atomic absorption spectrometry (ETAAS). Parameters related to the cloud point extraction procedure (Triton X-114 concentration, type of complexing agent (EDTA or Na2S2O3), pH, incubation temperature, incubation and centrifugation time) were selected using a multivariate approach (designs of experiments); 8.6% (v/v) Triton X-114, 750 µL saturated EDTA and pH 7 were selected as the optimum conditions. Calibration standards in a concentration range from 0 to 10 µg L?1 of AgNPs were subjected to the CPE procedure to obtain quantitative recoveries. The LOD and LOQ were 0.04 and 0.13 µg L?1, respectively. The method is selective for the extraction of AgNPs, and ionic Ag remains in the aqueous phase. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was used to evaluate the effect of the CPE procedure in particle size, and no changes were observed. Finally, the procedure was applied to wastewater samples spiked with nanoparticles with quantitative recoveries.  相似文献   

7.
In this work, the capabilities and limitations of solid sampling techniques – laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), wavelength dispersive X-ray fluorescence spectrometry (WD-XRFS) and solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS) – for the determination of silver in polymers have been evaluated and compared to those of acid digestion and subsequent Ag determination using pneumatic nebulization ICPMS (PN-ICPMS) or flame AAS (FAAS).  相似文献   

8.
A radiochemical separation method was developed for the separation of 109Cd from a nat.Ag target (6.6 g, pressed into a 19 mm disc). The method comprised of two stages. In the first stage, after dissolution of the target in nitric acid, silver was separated from Cd by precipitation into the metallic form using 20 g of Cu turnings for the reduction of Ag+ ions. In the second stage, 109Cd in the filtrate, that contained trace amount of silver and substantial quantity of Cu(I), was purified by use of a Bio-Rad AG1-X10 anion-exchange resin. The ion-exchange chromatography employed a column with (1.6 cm i.d. and 4 cm length) with a flow rate of 2 ml/min throughout the separation. 109Cd was quantitatively recovered from the first stage and the recovery yield from the ion-exchange chromatography was greater than 96%. 2M HCl containing H2O2 was used for the adsorption of 109Cd and elution of Cu. 109Cd was eluted by 50 ml 1M HNO3. The concentrations of stable isotopes of Ag and Cu in the final solution (5 ml 0.05M HCl) were measured by an ICP-OES method and found to be <1 ppm.  相似文献   

9.
An analytical method for separation and determination of thallium species in water using high‐performance liquid chromatography with inductively coupled plasma mass spectrometry was developed. The composition and concentration of mobile phase, injection volume, and pH value were optimized respectively with an anion or cation exchange column. The results showed that Tl(I) and Tl(III) were effectively separated using anion exchange column Hamilton PRP‐X100, with the mobile phase consisting of 200 mmol/L ammonium acetate and 10 mmol/L diethylenetriaminepentaacetic acid (pH = 4.2). When using a Dionex cation exchange guard column, CS12A, 15 mmol/L HNO3, and 3 mmol/L diethylenetriaminepentaacetic acid as the mobile phase, Tl(I) and Tl(III) could be effectively separated. The detection limits of the methods were 3–6 and 9–12 ng/L, respectively. In a solution containing Fe ions and oxalic acid, a significant quantity of Tl(I) was oxidized. Fe ions and oxalic acid in the water samples did not interfere with high‐performance liquid chromatography‐inductively coupled plasma mass spectrometry measurement results.  相似文献   

10.
A simple and effective procedure is developed to avoid the spectral interference from light rare earth elements (REEs) and barium polyatomic ions on some rare earth elements in inductively coupled plasma mass spectrometry (ICP-MS) by combining algebraic correction with AG50W-×8 cation exchangeable chromatography. Algebraic correction is made to reduce the spectroscopic overlap interference of 141Pr16O and 143Nd16O on 157Gd and 159Tb. The spectroscopic overlap interference of BaO+ and BaOH+ on some middle REEs are overcome by separation of REEs from barium with AG50W-×8 cation exchangeable chromatography. Prior to the determination, REEs are separated from complicated matrix samples using AG50W-×8 cation exchangeable resin. Ba is eluted with 2 mol/l HNO3 solution. REEs are retained and could then be eluted with 5 mol/l HNO3 solution. Recoveries for REEs are from 96 to 110%. More than 99.5% of Ba in the sample is removed, ensuring that the spectral interference from barium polyatomic ions on some middle REEs such as Nd, Sm, Eu and Gd are eliminated. The potential of the proposed method is evaluated by analysis of Certified Reference Materials (CRMs). Results show that experimental data are in good agreement with the certified values. The new technique has been successfully employed for the determination of REEs in practical soil and plant samples.  相似文献   

11.
Cadmium-109 is produced by the109Ag/p,n/ reaction at 9 MeV proton bombarding energy. Proton beam of about 30 A is obtained from a T11/25 Tandem Accelerator. Natural silver targets are prepared by electroplating onto thick copper discs. Radiochemical separation of cadmium is performed by using an anion exchange column. Simple methods of target preparation and separation of the produced cadmium-109 are presented.  相似文献   

12.
A new method for the quantitative extraction and determination of trace amounts of iridium from hydrochloric acid media has been established based on the formation of an ion-association complex of iridium hexachloro anion IrCl6 2– with dicyclohexyl-18-crown-6 (DC18C6) oxonium cation in chloroform, then determination by inductively coupled plasma atomic emission spectrometry (ICP–AES). The effect of various factors (solvent, acid concentration, crown ether, reagent concentration, shaking time, composition of the extracted species, foreign ions, etc.) on the extraction and back-extraction of iridium has been investigated. The procedure was used to determine traces of iridium in palladium chloride and rhodium chloride.  相似文献   

13.
High‐precision on‐line procedure for measurement of calcium isotopic ratio by coupling ion chromatography to multicollector inductively coupled plasma mass spectrometry was developed. Calcium separation from the sample matrix was achieved on an ion chromatography column—IonPac CS16—ID 3 mm connected with CERS 500 2 mm suppressor and followed by multicollector inductively coupled plasma mass spectrometry calcium isotopic ratio determination. Dry plasma mode was used with Aridus II desolvation system. To sustained samples with high level of total dissolved salts as well as account capacity of applied analytical column, the method has been optimized regarding calcium isotope ratio measurements with low‐resolution mass spectrometry. Mass discrimination and instrument drift were corrected by sample‐standard bracketing method using the 44Ca/42Ca isotope ratio of SRM 915a as a standard. Good accuracy and reasonable precision of calcium isotope ratio (generally 0.20‰ [2SD]) were achieved, which are comparable to off‐line Ca separation and continuous measurement. The reproducibility of the proposed analytical procedure was verified by measuring the SRM 915a standard as a sample randomly over 3 months (n = 56). Applicability of the protocol was demonstrated for matrix‐rich natural water samples, coral samples, and bone standard reference materials.  相似文献   

14.
A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO3, in a 2 ml column preconditioned with 20 ml 0.01 M HNO3. Subsequently, REEs were quantitatively eluted with 20 ml 7 M HNO3. This solution was evaporated to dryness and the final residue was dissolved in 10 ml 2% HNO3 containing 1 μg l−1 of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ng l−1. The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.  相似文献   

15.
《中国化学快报》2022,33(7):3444-3450
A simple and convenient method has been developed for the pre-concentration and separation of inorganic selenium species from environmental water samples using anion exchange chromatographic column combined with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) measurement. 75Se(IV) and 75Se(VI) were prepared and used as tracers during the experiments. The volatility of selenium during solution evaporation was investigated to establish a reliable water samples pretreatment procedure. The parameters which affect the uptake of Se(IV) and Se(VI) on Dowex1 × 8 resin was optimized and the procedure for Se(IV) and Se(VI) separation was proposed. Both Se(IV) and Se(VI) are retained on the column in natural or alkaline solution with high distribution coefficient. The successive gradient elution of pre-concentrated species of selenium with HNO3 solution allows to differentiate between them. Se(IV) and Se(VI) finally were eluted with 0.05 mol/L HNO3 and 5.0 mol/L HNO3, respectively. The proposed method has been successfully verified using the certified reference materials (CRMs) of real water samples, and spiked recoveries for real samples were 98%-104% with 5% relative standard deviations (RSDs). The developed procedure is proved to be reliable and can be used for the rapid determination of selenium species in environmental water samples.  相似文献   

16.
An inductively coupled plasma quadrupole mass spectrometer equipped with an octopole collision/reaction cell was used for the determination of cadmium in oyster tissue samples using isotope dilution inductively coupled plasma mass spectrometry. The oyster samples in question were found to contain Mo and Zr. In our feasibility study on a Cd standard solution (10 μg L−1) containing a matrix of Mo (1000 μg L−1) or Zr (250 μg L−1), the potentially interfering species (MoO+ or ZrO+) present at the analytical mass of cadmium concerned (m/z 111, 112 or 114) was reduced effectively through the use of a mixture of He and H2 as cell gases. The accuracy of the method was validated by the analysis of a matrix-matched certified reference material (CRM) of NIST SRM 1566b. The CRM was analyzed under the standard and He/H2 cell modes. Two isotopic pairs of 114Cd/111Cd and 112Cd/111Cd were selected for quantification purposes. The recoveries of cadmium obtained in the two cell modes were compared with each other. The validated method was applied successfully to the APMP.QM-P5 pilot study for international comparability purposes.  相似文献   

17.
A coprecipitation method using sample constituents as carrier precipitants was developed that can remove molybdenum, which interferes with the determination of cadmium in grain samples via isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). Samples were digested with HNO3, HF, and HClO4, and then purified 6 M sodium hydroxide solution was added to generate colloidal hydrolysis compounds, mainly magnesium hydroxide. Cadmium can be effectively separated from molybdenum because the cadmium forms hydroxides and adsorbs onto and/or is occluded in the colloid, while the molybdenum does not form hydroxides or adsorb onto the hydrolysis colloid. The colloid was separated by centrifugation and then dissolved with 0.2 M HNO3 solution to recover the cadmium. The recovery of Cd achieved using the coprecipitation was >97%, and the removal efficiency of Mo was approximately 99.9%. An extremely low procedural blank (below the detection limit of ICPMS) was achieved by purifying the 6 M sodium hydroxide solution via Mg coprecipitation using Mg(NO3)2 solution. The proposed method was applied to two certified reference materials (NIST SRM 1567a wheat flour and SRM 1568a rice flour) and CCQM-P64 soybean powder. Good analytical results with small uncertainties were obtained for all samples. This method is simple and reliable for the determination of Cd in grain samples by ID-ICPMS. Figure Overview of a coprecipitation method using sample constituents  相似文献   

18.
A sensitive procedure for the simultaneous determination of trace levels of iridium, palladium and silver in a platinum stock, by thermal-neutron activation analysis utilizing gamma-ray spectrometry, was developed. The radiochemical-separation scheme involved an elution of the chloro complexes of iridium and silver, and subsequently palladium, through a strongly-basic anion-exchange resin, followed by further chemical-separation methods. The ion-exchange method served to greatly reduce the hazard from radiations emitted by the bulk of the activities in the matrix. Activities of 13.5-hr109Pd, 74.2-d192Ir and 255-d110m Ag were monitored by accumulation of pulses from a 3-in diam. NaI(T1) crystal detector. Further discrimination was attained by resolution of decay curves. The procedure provided analyses for a platinum stock of 0.015±0.0021 ppm Ir; 0.028±0.0043 ppm Pd and 2.4±0.27 ppm Ag.  相似文献   

19.
A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1–2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.  相似文献   

20.
The development and implementation of a method for the certification of cadmium in blood samples at low ng g–1 and sub ng g–1 levels is described. The analytical procedure is based on inductively coupled plasma isotope dilution mass spectrometry (ICP–IDMS) applied as a primary method of measurement. Two different sample digestion methods, an optimized microwave digestion procedure using HNO3 and H2O2 as oxidizing agents and a high-pressure asher digestion procedure, were developed and compared. The very high salt content of the digests and the high molybdenum content, which can cause oxide-based interferences with the Cd isotopes, were reduced by a chromatographic matrix separation step using an anion-exchange resin. All isotope ratio measurements were performed by a quadrupole ICP–MS equipped with an ultrasonic nebulizer with membrane desolvator. This sample introduction set-up was used to increase sensitivity and minimize the formation of oxides (less MoO+ interference with the Cd isotopes). Because of the very low Cd concentrations in the samples and the resulting need to minimize the procedural blank as much as possible, all sample-processing steps were performed in a clean room environment. Detection limits of 0.005 ng g–1 Cd were achieved using sample weights of 2.7 g. The method described was used to re-certify the cadmium content of three different blood reference materials from the Community Bureau of Reference (BCR) of the European Commission (BCR-194, BCR-195, BCR-196). Cadmium concentrations ranged between ~0.2 ng g–1 and ~12 ng g–1. For these materials, SI-traceable certified values including total uncertainty budgets according to ISO and Eurachem guidelines were established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号