首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] has various applications in the separation of a range of metal ions replacing volatile and toxic traditional organic solvents in liquid–liquid extraction systems. In this study, the RTIL [C4mim][PF6] was used to separate no-carrier-added (NCA) 109Cd from α-particle irradiated Ag target. A natural Ag foil was bombarded by 30 MeV α-particles to produce 109Cd. After the decay of all co-produced short-lived products, NCA 109Cd was separated from the bulk Ag using [C4mim][PF6] as extractant from HNO3 medium. Ammoniumpyrrolidine dithiocarbamate (APDC) was used as a complexing agent. At the optimum condition, 3 M HNO3, 0.01 M APDC in presence of [C4mim][PF6], ~99 % bulk Ag was extracted to the IL phase, leaving NCA 109Cd in the aqueous phase. The amount of Ag became negligibly small after re-extraction in the same condition. The ionic liquid was recovered by washing it with 1 M HCl.  相似文献   

2.
Aqueous biphasic system (ABS) is greener alternative to the conventional liquid liquid extraction as ABS does not involve any organic or volatile reagents. Generally ABS systems are composed of polymer and salt rich phases. In this paper a new ABS system is proposed replacing polymer rich phase by water soluble room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium Chloride ([bmim]Cl) and kosmotropic salt K2HPO4. The system has been applied to separate the no-carrier-added (NCA) 109Cd (T 1/2 = 462.6 days) from the α-particle irradiated bulk Ag target. The optimum separation condition was achieved with the addition of 6 M HNO3 to the ABS, where ~87 % of the bulk Ag was extracted in the IL phase, leaving ~96 % NCA 109Cd in the salt rich phase. The salt rich phase was re-extracted twice with the RTIL to free from bulk Ag. This process achieved an overall separation of 91 % NCA 109Cd free from bulk Ag. The developed method demonstrates minimum requirement of RTIL to carry out the separation. The method is environmentally benign and cost effective.  相似文献   

3.
Sorption of Cd and Ag by a cation exchange resin has been studied at different molarities of nitric acid. The sorption capacity of Cd on a cation exchanger has been determined. A109Cd/109mAg generator is suggested, based on the sorption of Cd on AG 50W-X8 organic cation exchanger at 0.01M HNO3.109mAg is eluted with 0.2M NaCl, physiologically compatible for human use.  相似文献   

4.
A radiochemical separation method was developed for the separation of 109Cd from a nat.Ag target (6.6 g, pressed into a 19 mm disc). The method comprised of two stages. In the first stage, after dissolution of the target in nitric acid, silver was separated from Cd by precipitation into the metallic form using 20 g of Cu turnings for the reduction of Ag+ ions. In the second stage, 109Cd in the filtrate, that contained trace amount of silver and substantial quantity of Cu(I), was purified by use of a Bio-Rad AG1-X10 anion-exchange resin. The ion-exchange chromatography employed a column with (1.6 cm i.d. and 4 cm length) with a flow rate of 2 ml/min throughout the separation. 109Cd was quantitatively recovered from the first stage and the recovery yield from the ion-exchange chromatography was greater than 96%. 2M HCl containing H2O2 was used for the adsorption of 109Cd and elution of Cu. 109Cd was eluted by 50 ml 1M HNO3. The concentrations of stable isotopes of Ag and Cu in the final solution (5 ml 0.05M HCl) were measured by an ICP-OES method and found to be <1 ppm.  相似文献   

5.
A natural cadmium foil was irradiated by 42 MeV α-particles to produce 113,117mSn, 111,113m,114mIn simultaneously in the target matrix. After the complete decay of short lived radionuclides, long-lived NCA products were separated sequentially from the bulk cadmium by liquid–liquid extraction using di-(2-ethylhexyl)phosphoric acid (HDEHP) dissolved in cyclohexane as organic phase and HCl as aqueous phase. At the optimum condition, 10?2 M HCl and 5 % HDEHP, NCA In along with NCA Sn radionuclides (75 %) were separated from the bulk Cd resulting to high separation factors of 2.7 × 104 (D In/D Cd) and 500 (D Sn/D Cd), respectively. The NCA In was stripped back completely to the aqueous phase by 6 M HCl leaving NCA Sn in the HDEHP phase with a separation factor (D Sn/D In) of 3.94 × 106.  相似文献   

6.
A radiochemical purification procedure was developed for the separation of enriched cadmium (111Cd and 112Cd) from natural copper that used as backing; and was based upon the chromatographic adsorption. The separation of copper from cadmium was studied in this work. The ions were selectively separated from aqueous solution. Ion-exchange chromatography was employed as a column (1.5 cm i.d. and 15 cm length) with AG1-X8 resin (chloride form, 100–200 mesh) and a flow rate of 1–2 ml/min throughout the separation. 6 M HCl media was used for the adsorption of Cd and Cu on the resin. Then, Cu was eluted by 2 M HCl and Cd by 100 ml 0.5 M HNO3. The amount of Cu and Cd ions in the final solution (0.5 M HNO3) were measured by pulse polarographic method and the concentration of Cu was found to be <0.1 ppm. The Cd was quantitatively recovered and the recovery yield from ion-exchange chromatography was greater than 96 %.  相似文献   

7.
The separation procedure for Ag, B, Cd, Dy, Eu and Sm as impurities in Gd matrix using ICP-AES technique with an extraction chromatographic column has been developed. The spectral interference of the Gd matrix on the elements was eliminated using a chromatography technique with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) as the mobile phase and XAD-16 resin as the stationary phase. Ag+, B4O72−, and Cd2+ were eluted with 0.1 M HNO3, while rare earth ions were not. The best eluent for separating Eu and Sm in the Gd matrix was 0.3 M HNO3. The limit of quantitation for these elements was 0.6-3.0 ng mL−1. The recovery of Ag, B, and Cd was 90-104% using 0.1 M HNO3 as the eluent, while that of Eu, Gd, and Sm ranged from 100 to 102% with 0.3 M HNO3. Dy was recovered quantitatively with 4 M HNO3. The relative standard deviation of the methods for a set of three replicates was between 1.0 and 15.4% for the synthetic and standard Gd solutions. The proposed separation procedure was used to measure Ag, B, Cd, Dy, Eu, and Sm in a standard Gd solution.  相似文献   

8.
The 109Cd radionuclide was produced in the cyclotron via natAg(p,n)109Cd reaction. The radiochemical separation of 109Cd from silver and non-isotopic impurities comprised of two stages. The optimum conditions of the 109Cd separation methods were: Ag precipitation with 0.015 M HCl and Cu and 65Zn by use of 0.015 M HCl on AG1-X8 strong anion-exchange resin. Chemical and radionuclidic purity of 109Cd were measured by ICP-AES and gamma-ray spectrometry respectively. Recovery yield and radionuclidic purity were obtained 99.7% and 99%, respectively.  相似文献   

9.
This paper describes a new method for the production of 103Pd and 109Cd using the 66 MeV proton beam of iThemba LABS on a tandem natural silver target (Ag/Ag). The radiochemical separation of the Pd radionuclides (103Pd, 100Pd) from the bulk natAg was done using a Chelex-100 chelating resin column. The recovery of 103Pd from the irradiated natAg target was found to be >98 % without any Ag or Rh impurities detected. The radiochemical separation of 109Cd from the bulk natAg target was done by the precipitation of Ag ions by Cu followed by the separation of 109Cd, traces of Ag, Cu2+ and Rh using a AG1-X10 anion exchange resin column. The recovery yield of 109Cd was >99 % without any Ag or Rh impurities detected.  相似文献   

10.
A flow injection-based electrochemical detection system coupled to a solid-phase extraction column was developed for the determination of trace amounts of plutonium in low-active liquid wastes from spent nuclear-fuel reprocessing plants. The oxidation state of plutonium in a sample solution was adjusted to Pu(VI) by the addition of silver(II) oxide. A sample solution was made up in 3 mol L?1 HNO3 and loaded onto a column packed with UTEVA® with 3 mol L?1 HNO3 as the carrier. Plutonium(VI) was adsorbed onto the resin, and interfering elements were removed by rinsing the column with 3 mol L?1 HNO3. Subsequently, the adsorbed Pu(VI) was eluted with 0.01 mol L?1 HNO3, and then introduced directly into the flow-through electrolysis cell with boron-doped diamond electrode. The eluted Pu(VI) was detected by an electrochemical amperometric method at a working potential of 0.1 V (vs. Ag/AgCl). The current produced on reduction of Pu(VI) was continuously monitored and recorded. The plutonium concentration was calculated from the relationship between the peak area and concentration of plutonium. The relative standard deviation of ten analyses was 1.1% for a plutonium solution of 25 μg L?1 containing 50 ng of Pu. The detection limit calculated from three-times the standard deviation was 0.82 μg L?1 (1.6 ng of Pu).  相似文献   

11.
Heavy-ion activation with ~55 MeV 11B beam on silver target leads to the production of carrier-free 111In, 116,117Te and 116,116m,117Sb radioisotopes in the target matrix. Liquid-liquid extraction, using Aliquat-336 and trioctylamine (TOA) as liquid anion exchangers in HNO3 and HCl medium, respectively, and di-(2-ethylhexyl)phosphoric acid (HDEHP) as liquid cation exchanger in ammoniacal medium was used to investigate the separation of the produced radioisotopes from the bulk target matrix.  相似文献   

12.
《Analytical letters》2012,45(9):1430-1441
A new column loaded with modified silica gel-chitosan is proposed as a preconcentration system for adsorption of trace cadmium (II) and copper (II). The optimization steps were performed under dynamic conditions, involving pH, sample flow rate, eluent selection, concentration, volume, and flow rate. Trace Cd(II) and Cu(II) were quantitatively adsorbed by the modified silica gel-chitosan. The metal ions adsorbed on the separation column were eluted with 0.1 M HNO3 and determined by flame atomic absorption spectrometry. Under the optimum conditions, this method allowed the determination of cadmium and copper with limits of detection (LOD) of 20 ng L?1 and 38 ng L?1, respectively. The relative standard deviation values (RSDs) for 1.0 mg L?1 of cadmium and 1.0 mg L?1 of copper were 2.62% and 2.85%, respectively.  相似文献   

13.
Separation of no-carrier-added (NCA) 97Ru from bulk niobium target has been carried out for the first time using green analytical technique, aqueous biphasic system. 50 % (w/v) polyethylene glycol (PEG)-4000, against 2 M solutions of various salts such as Na-citrate, Na-tartarate, Na-malonate, Na2CO3, NaHSO3, Na2SO4, Na2S2O3 K2HPO4, K3PO4, K2CO3 and 4 M KOH were employed at room temperature for the extraction of NCA 97Ru from bulk niobium. Influence of molecular weight of PEG rich phase as well as pH of some salt rich phase (e.g., Na-tartarate) on the extraction behaviour of NCA 97Ru into PEG rich phase was also observed. In the presence of sodium-tartarate salt solution, when volume of PEG-4000: Na-tartarate was 3:1, 91 % of NCA 97Ru was extracted into the PEG rich phase without any contamination of niobium target. Dialysis of PEG rich phase containing NCA 97Ru was carried out against deionised water to obtained pure NCA 97Ru.  相似文献   

14.
Extraction behavior of Th(IV) and U(VI) has been investigated with bis(2-ethylhexyl) phosphinic acid (PIA-8) and bis(2-ethylhexyl) phosphoric acid (HDEHP) from nitric acid media in toluene. The optimum conditions for extraction of these metals have been established by studying various parameters like acid concentration, pH, reagent concentration, diluents and shaking time. The extraction of Th(IV) was found to be quantitative with 0.3-2.5M HNO3 by 2.5.10-2M HDEHP and in the pH range 0.1-2.5 with 2.3.10-2M PIA-8 in toluene. U(VI) was completely extracted in the acidic range of 0.1-2.0M HNO3 with 2.2.10-2M HDEHP and in the pH range of 1.0-3.0 with 2.0.10-2M PIA-8 in toluene. The probable extracted species have been ascertained by log D-log c plot as UO2 R2 .2HR with both the reagents and Th (NO3)2R2 .2HR with PIA-8 and Th (NO3)3R.3HR with HDEHP, respectively. Temperature dependence of the extraction equilibrium is examined by the temperature variation method. Separation of U(VI) and Th(IV) was also carried out from commonly associated metals.  相似文献   

15.
Summary To separate minor actinides from HLLW by extraction chromatography, a few novel silica-based di(2-ethylhexyl)phosphoric acid (HDEHP), 4,4¢,(5¢)-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), and N,N,N¢,N¢-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric adsorption materials (HDEHP/SiO2-P, DtBuCH18C6/SiO2-P, CMPO/SiO2-P, and TODGA/SiO2-P) were synthesized by impregnating HDEHP, DtBuCH18C6, CMPO, and TODGA into the pores of porous SiO2-P particles, which were the new kind of inorganic/organic composites consisted of macroporous SiO2 and copolymer. The bleeding behavior of these composites was investigated by examining the effect of contact time and HNO3 concentration. It was found that in the tested HNO3 concentration range, a noticeable quantity of DtBuCH18C6, at least 600 ppm, leaked out from DtBuCH18C6/SiO2-P because of the protonation of DtBuCH18C6 with hydrogen ion, while the others were lower and basically equivalent to the solubility of HDEHP, CMPO, or TODGA in corresponding acidities solutions. Based on the batch experiment, the bleeding of CMPO/SiO2-P and TODGA/SiO2-P, the main adsorbents used in MAREC process for HLLW partitioning, was evaluated by column operation in 0.01M HNO3 and 3M HNO3. The quantity of CMPO leaked was ~48 ppm in 0.01M HNO3 and ~37 ppm in 3.0M HNO3. The bleeding of TODGA decreased from 23.2 ppm to 7.27 ppm at the initial stage and then basically kept constant. An actual bleeding of TODGA was evaluated by the separation of Sr(II) from a 2.0M HNO3 solution containing 5.0 . 10-3M of 6 typically simulated elements.  相似文献   

16.
In the method, soil was fused together with Na2CO3 and Na2O2 at 600 °C, uranium and thorium were leached out with HCl, HNO3 and HF, and HClO4 was used to eliminate the residual HF through evaporation. The leaching solution (2 M HNO3) was passed through a Microthene-TOPO column to adsorb uranium and thorium. Thorium was first eluted with 2 M HCl and electrodeposited in 0.025 M H2C2O4 + 0.15 M HNO3 on a stainless steel disc. Uranium was eluted with a 0.025 M ammonium oxalate solution and also electrodeposited. Both thorium and uranium isotopes on the discs were measured separately by α-spectrometry.  相似文献   

17.
A separation method was investigated to perform off-line cadmium isotopic measurements on a 109Ag transmutation target. Ion chromatography (IC) with Q ICPMS detection (quadrupole inductively coupled plasma mass spectrometry detection) was chosen to separate cadmium from the isobarically interfering elements, silver and palladium, present in the sample. The optimization of chromatographic conditions was particularly studied. Several anion and cation columns (Dionex AG11®, CS10® and CS12®) were compared with different mobile phases (HNO3, HCl). The separation procedure was achieved with a carboxylate-functionalized cation exchange CS12 column using 0.5 M HNO3 as eluent. The developed technique yielded satisfactory results in terms of separation factors (greater than 5) and provides an efficient solution to obtain rapidly purified cadmium fractions (decontamination factors higher 100,000 for silver and palladium) which can directly be analyzed by multi collection inductively coupled plasma mass spectrometry (MC ICPMS). By applying the proposed procedure, accurate and precise cadmium isotope ratios were determined for the irradiated 109Ag transmutation target.  相似文献   

18.
In this study, a flow-based electrochemical detection system coupled to a solid-phase extraction column was developed for the determination of neptunium in the presence of Pu(IV). Np(V) in the sample solution was completely oxidized to Np(VI) via electrolysis using a column electrode composed of carbon fibers. The column electrode effluent was then loaded onto a TEVA® column, and subsequently onto a UTEVA® column using 3 mol L?1 HNO3. Pu(IV) was retained on the TEVA column and separated from Np(VI), while Np(VI) was retained on the UTEVA column. Np(VI) was eluted from the UTEVA column with 0.01 mol L?1 HNO3 and then introduced directly into a flow-through electrolysis cell. An electrochemical amperometric method with a working potential of +0.1 V (vs. Ag/AgCl) was used to detect Np(VI). The current produced due to the reduction of Np(VI) was continuously monitored and recorded, and the Np concentration was calculated from the peak area. The relative standard deviation of 10 analyses was 2.4 % for an Np solution (0.50 mg L?1) containing 1.0 μg Np. The detection limit, which was determined to be three times the standard deviation, was 35 μg L?1 (70 ng Np).  相似文献   

19.
A simple solvent extraction procedure for the efficient separation of the radioactive tracers95Nb and182Ta from each other in a mixture using di-(2-ethylhexyl)phosphoric acid (HDEHP) as extractant is described. Tantalum was found to be quantitatively extracted from an aqueous madium, which is 1.6N in HCl and 10?2 M in oxalic acid, with a HDEHP solution of 0.1 M concentration. Extractabilities of both niobium and tantalum in mineral acids like HCl, H2SO4 and HNO3 and in some organic acids like oxalic, citric, etc., in HDEHP under the experimental conditions were also studied. The reliability of the separation procedure was verified further by γ-ray spectrometry.  相似文献   

20.
Facilitated transport of silver(I) ions in acidic medium, across a supported liquid membrane (SLM) by using triethanolamine (TEA) as carrier, dissolved in cyclohexanone, has been investigated. The parameters studied are HNO3 concentration variation in the feed, pH of the feed solution, carrier concentration in the membrane phase, silver(I) ions concentration in the feed phase and KCN concentration in the stripping phase. Increase in H+ concentration by increasing HNO3 concentration from 0.5 to 1 M results into an increase in silver ions flux but a decrease in flux has been found beyond 1 M HNO3 concentration in the feed, providing a maximum flux of 3.21 × 10−7 mol/m2 s at 1 M HNO3. Increase in TEA concentration inside the membrane enhances flux with its maximum value at 2.25 M TEA. Further increase in the concentration of TEA leads to a decreased rate of transport due to the increase in viscosity of membrane liquid. The optimum conditions for Ag(I) ions transport are 1 M HNO3 (feed), 2.25 M TEA (membrane) and 1.5 M KCN in the stripping phase. It has been observed that Ag(I) flux across the membrane tends to increase with increase in Ag(I) ions concentration in the feed phase. Applying the studied conditions to silver plating waste solutions, Ag ions have been removed up to 99% in a time interval of 5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号